Prior choice affects ability of Bayesian neural networks to identify
unknowns
- URL: http://arxiv.org/abs/2005.04987v1
- Date: Mon, 11 May 2020 10:32:47 GMT
- Title: Prior choice affects ability of Bayesian neural networks to identify
unknowns
- Authors: Daniele Silvestro and Tobias Andermann
- Abstract summary: We show that the choice of priors has a substantial impact on the ability of the model to confidently assign data to the correct class.
We also show that testing alternative options can improve the performance of BNNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Bayesian neural networks (BNNs) are a powerful tool, though
computationally demanding, to perform parameter estimation while jointly
estimating uncertainty around predictions. BNNs are typically implemented using
arbitrary normal-distributed prior distributions on the model parameters. Here,
we explore the effects of different prior distributions on classification tasks
in BNNs and evaluate the evidence supporting the predictions based on posterior
probabilities approximated by Markov Chain Monte Carlo sampling and by
computing Bayes factors. We show that the choice of priors has a substantial
impact on the ability of the model to confidently assign data to the correct
class (true positive rates). Prior choice also affects significantly the
ability of a BNN to identify out-of-distribution instances as unknown (false
positive rates). When comparing our results against neural networks (NN) with
Monte Carlo dropout we found that BNNs generally outperform NNs. Finally, in
our tests we did not find a single best choice as prior distribution. Instead,
each dataset yielded the best results under a different prior, indicating that
testing alternative options can improve the performance of BNNs.
Related papers
- Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
We propose a framework for integrating general forms of domain knowledge into a BNN prior.
We show that BNNs using our proposed domain knowledge priors outperform those with standard priors.
arXiv Detail & Related papers (2024-02-20T22:34:53Z) - Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
We introduce an approach for uncertainty quantification (UQ) within physics-informed BNNs.
We present case studies for predicting the creep rupture life of steel alloys.
The most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo approximation of the posterior distribution of network parameters.
arXiv Detail & Related papers (2023-11-04T19:40:16Z) - Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
We will consider two extensions to the latent binary Bayesian neural networks (LBBNN) method.
Firstly, by using the local reparametrization trick (LRT) to sample the hidden units directly, we get a more computationally efficient algorithm.
More importantly, by using normalizing flows on the variational posterior distribution of the LBBNN parameters, the network learns a more flexible variational posterior distribution than the mean field Gaussian.
arXiv Detail & Related papers (2023-05-05T09:40:28Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - Debiased Graph Neural Networks with Agnostic Label Selection Bias [59.61301255860836]
Most existing Graph Neural Networks (GNNs) are proposed without considering the selection bias in data.
We propose a novel Debiased Graph Neural Networks (DGNN) with a differentiated decorrelation regularizer.
Our proposed model outperforms the state-of-the-art methods and DGNN is a flexible framework to enhance existing GNNs.
arXiv Detail & Related papers (2022-01-19T16:50:29Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs [12.429095025814345]
We propose pseudo-BNNs where instead of learning distributions over weights, we use point estimates and perturb weights at the time of inference.
Overall, this combination results in a principled technique to detect OOD samples at the time of inference.
arXiv Detail & Related papers (2021-02-02T06:23:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Bayesian x-vector: Bayesian Neural Network based x-vector System for
Speaker Verification [71.45033077934723]
We incorporate Bayesian neural networks (BNNs) into the deep neural network (DNN) x-vector speaker verification system.
With the weight uncertainty modeling provided by BNNs, we expect the system could generalize better on the evaluation data.
Results show that the system could benefit from BNNs by a relative EER decrease of 2.66% and 2.32% respectively for short- and long-utterance in-domain evaluations.
arXiv Detail & Related papers (2020-04-08T14:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.