Transfer Learning and Online Learning for Traffic Forecasting under
Different Data Availability Conditions: Alternatives and Pitfalls
- URL: http://arxiv.org/abs/2005.05069v1
- Date: Fri, 8 May 2020 10:53:49 GMT
- Title: Transfer Learning and Online Learning for Traffic Forecasting under
Different Data Availability Conditions: Alternatives and Pitfalls
- Authors: Eric L. Manibardo, Ibai La\~na, Javier Del Ser
- Abstract summary: This work aims at unveiling the potential of Transfer Learning (TL) for developing a traffic flow forecasting model in scenarios of absent data.
Traditional batch learning is compared against TL based models using real traffic flow data, collected by deployed loops managed by the City Council of Madrid (Spain)
In addition, we apply Online Learning (OL) techniques, where model receives an update after each prediction, in order to adapt to traffic flow trend changes and incrementally learn from new incoming traffic data.
- Score: 7.489793155793319
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This work aims at unveiling the potential of Transfer Learning (TL) for
developing a traffic flow forecasting model in scenarios of absent data.
Knowledge transfer from high-quality predictive models becomes feasible under
the TL paradigm, enabling the generation of new proper models with few data. In
order to explore this capability, we identify three different levels of data
absent scenarios, where TL techniques are applied among Deep Learning (DL)
methods for traffic forecasting. Then, traditional batch learning is compared
against TL based models using real traffic flow data, collected by deployed
loops managed by the City Council of Madrid (Spain). In addition, we apply
Online Learning (OL) techniques, where model receives an update after each
prediction, in order to adapt to traffic flow trend changes and incrementally
learn from new incoming traffic data. The obtained experimental results shed
light on the advantages of transfer and online learning for traffic flow
forecasting, and draw practical insights on their interplay with the amount of
available training data at the location of interest.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
We propose a Traffic flow Prediction model based on Large Language Models (LLMs) to generate explainable traffic predictions.
By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data.
Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions.
arXiv Detail & Related papers (2024-04-03T07:14:15Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
We show that passive data can still be used to learn features that accelerate downstream RL.
Our approach learns from passive data by modeling intentions.
Our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
arXiv Detail & Related papers (2023-04-10T17:59:05Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - NodeTrans: A Graph Transfer Learning Approach for Traffic Prediction [33.299309349152146]
We propose a novel transfer learning approach to solve the traffic prediction with few data.
First, a spatial-temporal graph neural network is proposed, which can capture the node-specific spatial-temporal traffic patterns of different road networks.
arXiv Detail & Related papers (2022-07-04T10:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.