Learning to Slide Unknown Objects with Differentiable Physics
Simulations
- URL: http://arxiv.org/abs/2005.05456v2
- Date: Thu, 4 Jun 2020 01:07:23 GMT
- Title: Learning to Slide Unknown Objects with Differentiable Physics
Simulations
- Authors: Changkyu Song and Abdeslam Boularias
- Abstract summary: We propose a new technique for pushing an unknown object from an initial configuration to a goal configuration with stability constraints.
The proposed method leverages recent progress in differentiable physics models to learn unknown mechanical properties of pushed objects.
- Score: 16.86640234046472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new technique for pushing an unknown object from an initial
configuration to a goal configuration with stability constraints. The proposed
method leverages recent progress in differentiable physics models to learn
unknown mechanical properties of pushed objects, such as their distributions of
mass and coefficients of friction. The proposed learning technique computes the
gradient of the distance between predicted poses of objects and their actual
observed poses and utilizes that gradient to search for values of the
mechanical properties that reduce the reality gap. The proposed approach is
also utilized to optimize a policy to efficiently push an object toward the
desired goal configuration. Experiments with real objects using a real robot to
gather data show that the proposed approach can identify the mechanical
properties of heterogeneous objects from a small number of pushing actions.
Related papers
- Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos [8.012771454339353]
We propose a novel approach for real-to-sim which tracks rigid objects in 3D from RGB-D images and infers physical properties of the objects.
We demonstrate and evaluate our approach on a real-world dataset.
arXiv Detail & Related papers (2023-09-27T14:46:01Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
We introduce a method that explicitly optimize the constraint that each object in a scene should be associated with a distinct slot.
By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance.
Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.
arXiv Detail & Related papers (2023-06-03T21:49:06Z) - Local Region-to-Region Mapping-based Approach to Classify Articulated
Objects [2.3848738964230023]
This paper presents a registration-based local region-to-region mapping approach to classify an object as either articulated or rigid.
It is observed that the proposed method can classify articulated and rigid objects with good accuracy.
arXiv Detail & Related papers (2023-05-10T18:08:04Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - A Bayesian Treatment of Real-to-Sim for Deformable Object Manipulation [59.29922697476789]
We propose a novel methodology for extracting state information from image sequences via a technique to represent the state of a deformable object as a distribution embedding.
Our experiments confirm that we can estimate posterior distributions of physical properties, such as elasticity, friction and scale of highly deformable objects, such as cloth and ropes.
arXiv Detail & Related papers (2021-12-09T17:50:54Z) - DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes [9.119424247289857]
Differentiable physics is a powerful tool in computer and robotics for scene understanding and reasoning about interactions.
Existing approaches have frequently been limited to objects with simple shape or shapes that are in advance.
arXiv Detail & Related papers (2021-11-30T11:56:24Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z) - Identifying Mechanical Models through Differentiable Simulations [16.86640234046472]
This paper proposes a new method for manipulating unknown objects through a sequence of non-prehensile actions.
The proposed method leverages recent progress in differentiable physics models to identify unknown mechanical properties of manipulated objects.
arXiv Detail & Related papers (2020-05-11T20:19:20Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.