Latent Fingerprint Registration via Matching Densely Sampled Points
- URL: http://arxiv.org/abs/2005.05878v2
- Date: Wed, 20 Jan 2021 02:54:13 GMT
- Title: Latent Fingerprint Registration via Matching Densely Sampled Points
- Authors: Shan Gu, Jianjiang Feng, Jiwen Lu, Jie Zhou
- Abstract summary: Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
- Score: 100.53031290339483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent fingerprint matching is a very important but unsolved problem. As a
key step of fingerprint matching, fingerprint registration has a great impact
on the recognition performance. Existing latent fingerprint registration
approaches are mainly based on establishing correspondences between minutiae,
and hence will certainly fail when there are no sufficient number of extracted
minutiae due to small fingerprint area or poor image quality. Minutiae
extraction has become the bottleneck of latent fingerprint registration. In
this paper, we propose a non-minutia latent fingerprint registration method
which estimates the spatial transformation between a pair of fingerprints
through a dense fingerprint patch alignment and matching procedure. Given a
pair of fingerprints to match, we bypass the minutiae extraction step and take
uniformly sampled points as key points. Then the proposed patch alignment and
matching algorithm compares all pairs of sampling points and produces their
similarities along with alignment parameters. Finally, a set of consistent
correspondences are found by spectral clustering. Extensive experiments on
NIST27 database and MOLF database show that the proposed method achieves the
state-of-the-art registration performance, especially under challenging
conditions.
Related papers
- A Robust Algorithm for Contactless Fingerprint Enhancement and Matching [7.820996917431323]
contactless fingerprint images exhibit four distinct characteristics.
They contain less noise, have fewer discontinuities in ridge patterns, and pose an interoperability problem.
We propose a novel contactless fingerprint identification solution that enhances the accuracy of minutiae detection.
arXiv Detail & Related papers (2024-08-18T10:01:42Z) - Fixed-length Dense Descriptor for Efficient Fingerprint Matching [33.808749518785]
We propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching.
FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints.
Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors.
arXiv Detail & Related papers (2023-11-30T14:15:39Z) - A Universal Latent Fingerprint Enhancer Using Transformers [47.87570819350573]
This study aims to develop a fast method, which we call ULPrint, to enhance various latent fingerprint types.
In closed-set identification accuracy experiments, the enhanced image was able to improve the performance of the MSU-AFIS from 61.56% to 75.19%.
arXiv Detail & Related papers (2023-05-31T23:01:11Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
We propose a new scheme that can model the pair-relationship of two fingerprints directly as the similarity feature for recognition.
Experimental results on two databases show that the proposed method outperforms the state of the art.
arXiv Detail & Related papers (2022-07-02T11:31:31Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets.
This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data.
arXiv Detail & Related papers (2022-04-13T16:27:27Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Fingerprint Matching using the Onion Peeling Approach and Turning
Function [0.0]
Fingerprint is one of the most popular and robust biometric traits.
Most fingerprint matching algorithms are minutiae-based.
This paper presents a new minutiae-based fingerprint matching using the onion peeling approach.
arXiv Detail & Related papers (2021-10-03T09:10:44Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Dense Registration and Mosaicking of Fingerprints by Training an
End-to-End Network [36.50244665233824]
We train an end-to-end network to output pixel-wise displacement field between two fingerprints.
We also propose a fingerprint mosaicking method based on optimal seam selection.
Our registration method outperforms previous dense registration methods in accuracy and efficiency.
arXiv Detail & Related papers (2020-04-13T14:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.