Efficient and Model-Based Infrared and Visible Image Fusion Via
Algorithm Unrolling
- URL: http://arxiv.org/abs/2005.05896v2
- Date: Fri, 23 Apr 2021 12:04:44 GMT
- Title: Efficient and Model-Based Infrared and Visible Image Fusion Via
Algorithm Unrolling
- Authors: Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia
Zhang, Junmin Liu
- Abstract summary: Infrared and visible image fusion (IVIF) expects to obtain images that retain thermal radiation information from infrared images and texture details from visible images.
A model-based convolutional neural network (CNN) model is proposed to overcome the shortcomings of traditional CNN-based IVIF models.
- Score: 24.83209572888164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared and visible image fusion (IVIF) expects to obtain images that retain
thermal radiation information from infrared images and texture details from
visible images. In this paper, a model-based convolutional neural network (CNN)
model, referred to as Algorithm Unrolling Image Fusion (AUIF), is proposed to
overcome the shortcomings of traditional CNN-based IVIF models. The proposed
AUIF model starts with the iterative formulas of two traditional optimization
models, which are established to accomplish two-scale decomposition, i.e.,
separating low-frequency base information and high-frequency detail information
from source images. Then the algorithm unrolling is implemented where each
iteration is mapped to a CNN layer and each optimization model is transformed
into a trainable neural network. Compared with the general network
architectures, the proposed framework combines the model-based prior
information and is designed more reasonably. After the unrolling operation, our
model contains two decomposers (encoders) and an additional reconstructor
(decoder). In the training phase, this network is trained to reconstruct the
input image. While in the test phase, the base (or detail) decomposed feature
maps of infrared/visible images are merged respectively by an extra fusion
layer, and then the decoder outputs the fusion image. Qualitative and
quantitative comparisons demonstrate the superiority of our model, which can
robustly generate fusion images containing highlight targets and legible
details, exceeding the state-of-the-art methods. Furthermore, our network has
fewer weights and faster speed.
Related papers
- Lightweight single-image super-resolution network based on dual paths [0.552480439325792]
Single image super-resolution(SISR) algorithms under deep learning currently have two main models, one based on convolutional neural networks and the other based on Transformer.
This paper proposes a new lightweight multi-scale feature fusion network model based on two-way complementary convolutional and Transformer.
arXiv Detail & Related papers (2024-09-10T15:31:37Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
This paper diverges from vision transformers by using a computationally-efficient WaveMix-based fully convolutional architecture -- WavePaint.
It uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing along with convolutional layers.
Our model even outperforms current GAN-based architectures in CelebA-HQ dataset without using an adversarially trainable discriminator.
arXiv Detail & Related papers (2023-07-01T18:41:34Z) - LRRNet: A Novel Representation Learning Guided Fusion Network for
Infrared and Visible Images [98.36300655482196]
We formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it.
In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model.
Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images.
arXiv Detail & Related papers (2023-04-11T12:11:23Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid
Learning [48.890709236564945]
A small ISO and a small exposure time are usually used to capture an image in the back or low light conditions.
In this paper, a single image brightening algorithm is introduced to brighten such an image.
The proposed algorithm includes a unique hybrid learning framework to generate two virtual images with large exposure times.
arXiv Detail & Related papers (2020-07-04T08:23:07Z) - Bayesian Fusion for Infrared and Visible Images [26.64101343489016]
In this paper, a novel Bayesian fusion model is established for infrared and visible images.
We aim at making the fused image satisfy human visual system.
Compared with the previous methods, the novel model can generate better fused images with high-light targets and rich texture details.
arXiv Detail & Related papers (2020-05-12T14:57:19Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.