DREAM Architecture: a Developmental Approach to Open-Ended Learning in
Robotics
- URL: http://arxiv.org/abs/2005.06223v1
- Date: Wed, 13 May 2020 09:29:40 GMT
- Title: DREAM Architecture: a Developmental Approach to Open-Ended Learning in
Robotics
- Authors: Stephane Doncieux (ISIR), Nicolas Bredeche (ISIR), L\'eni Le Goff
(ISIR), Beno\^it Girard (ISIR), Alexandre Coninx (ISIR), Olivier Sigaud
(ISIR), Mehdi Khamassi (ISIR), Natalia D\'iaz-Rodr\'iguez (U2IS), David
Filliat (U2IS), Timothy Hospedales (ICSA), A. Eiben (VU), Richard Duro
- Abstract summary: We present a developmental cognitive architecture to bootstrap this redescription process stage by stage, build new state representations with appropriate motivations, and transfer the acquired knowledge across domains or tasks or even across robots.
- Score: 44.62475518267084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots are still limited to controlled conditions, that the robot designer
knows with enough details to endow the robot with the appropriate models or
behaviors. Learning algorithms add some flexibility with the ability to
discover the appropriate behavior given either some demonstrations or a reward
to guide its exploration with a reinforcement learning algorithm. Reinforcement
learning algorithms rely on the definition of state and action spaces that
define reachable behaviors. Their adaptation capability critically depends on
the representations of these spaces: small and discrete spaces result in fast
learning while large and continuous spaces are challenging and either require a
long training period or prevent the robot from converging to an appropriate
behavior. Beside the operational cycle of policy execution and the learning
cycle, which works at a slower time scale to acquire new policies, we introduce
the redescription cycle, a third cycle working at an even slower time scale to
generate or adapt the required representations to the robot, its environment
and the task. We introduce the challenges raised by this cycle and we present
DREAM (Deferred Restructuring of Experience in Autonomous Machines), a
developmental cognitive architecture to bootstrap this redescription process
stage by stage, build new state representations with appropriate motivations,
and transfer the acquired knowledge across domains or tasks or even across
robots. We describe results obtained so far with this approach and end up with
a discussion of the questions it raises in Neuroscience.
Related papers
- Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
We propose an agent-based framework for grounding robot policies to the current context.
The proposed framework is composed of a set of conversational agents designed for specific roles.
We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion.
We propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy.
arXiv Detail & Related papers (2021-07-04T15:42:01Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Thinking While Moving: Deep Reinforcement Learning with Concurrent
Control [122.49572467292293]
We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system.
Much like a person or an animal, the robot must think and move at the same time, deciding on its next action before the previous one has completed.
arXiv Detail & Related papers (2020-04-13T17:49:29Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z) - SQUIRL: Robust and Efficient Learning from Video Demonstration of
Long-Horizon Robotic Manipulation Tasks [8.756012472587601]
Deep reinforcement learning (RL) can be used to learn complex manipulation tasks.
RL requires the robot to collect a large amount of real-world experience.
S SQUIRL performs a new but related long-horizon task robustly given only a single video demonstration.
arXiv Detail & Related papers (2020-03-10T20:26:26Z) - On Simple Reactive Neural Networks for Behaviour-Based Reinforcement
Learning [5.482532589225552]
We present a behaviour-based reinforcement learning approach, inspired by Brook's subsumption architecture.
Our working assumption is that a pick and place robotic task can be simplified by leveraging domain knowledge of a robotics developer.
Our approach learns the pick and place task in 8,000 episodes, which represents a drastic reduction in the number of training episodes required by an end-to-end approach.
arXiv Detail & Related papers (2020-01-22T11:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.