Artificial Neural Network Pruning to Extract Knowledge
- URL: http://arxiv.org/abs/2005.06284v2
- Date: Tue, 3 Aug 2021 11:55:26 GMT
- Title: Artificial Neural Network Pruning to Extract Knowledge
- Authors: Evgeny M Mirkes
- Abstract summary: This paper lists the basic NN simplification problems and controlled pruning procedures to solve these problems.
The developed procedures find the optimal structure of NN for each task, measure the influence of each input signal and NN parameter, and provide a detailed verbal description of the algorithms and skills of NN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Neural Networks (NN) are widely used for solving complex problems
from medical diagnostics to face recognition. Despite notable successes, the
main disadvantages of NN are also well known: the risk of overfitting, lack of
explainability (inability to extract algorithms from trained NN), and high
consumption of computing resources. Determining the appropriate specific NN
structure for each problem can help overcome these difficulties: Too poor NN
cannot be successfully trained, but too rich NN gives unexplainable results and
may have a high chance of overfitting. Reducing precision of NN parameters
simplifies the implementation of these NN, saves computing resources, and makes
the NN skills more transparent. This paper lists the basic NN simplification
problems and controlled pruning procedures to solve these problems. All the
described pruning procedures can be implemented in one framework. The developed
procedures, in particular, find the optimal structure of NN for each task,
measure the influence of each input signal and NN parameter, and provide a
detailed verbal description of the algorithms and skills of NN. The described
methods are illustrated by a simple example: the generation of explicit
algorithms for predicting the results of the US presidential election.
Related papers
- Neural Network Verification with Branch-and-Bound for General Nonlinearities [63.39918329535165]
Branch-and-bound (BaB) is among the most effective techniques for neural network (NN) verification.
We develop a general framework, named GenBaB, to conduct BaB on general nonlinearities to verify NNs with general architectures.
We demonstrate the effectiveness of our GenBaB on verifying a wide range of NNs, including NNs with activation functions such as Sigmoid, Tanh, Sine and GeLU.
arXiv Detail & Related papers (2024-05-31T17:51:07Z) - NN-Steiner: A Mixed Neural-algorithmic Approach for the Rectilinear
Steiner Minimum Tree Problem [5.107107601277712]
We focus on the rectilinear Steiner minimum tree (RSMT) problem, which is of critical importance in IC layout design.
We propose NN-Steiner, which is a novel mixed neural-algorithmic framework for computing RSMTs.
In particular, NN-Steiner only needs four neural network (NN) components that are called repeatedly within an algorithmic framework.
arXiv Detail & Related papers (2023-12-17T02:42:11Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Recurrent Convolutional Neural Networks Learn Succinct Learning
Algorithms [25.1675203905385]
We show a NN architecture that learns as well as any efficient learning algorithm describable by a constant-sized learning algorithm.
Our architecture combines both recurrent weight-sharing between layers and convolutional weight-sharing to reduce the number of parameters down to a constant.
While in practice the constants in our analysis are too large to be directly meaningful, our work suggests that the synergy of Recurrent and Convolutional NNs may be more powerful than either alone.
arXiv Detail & Related papers (2022-09-01T21:55:22Z) - Automated Repair of Neural Networks [0.26651200086513094]
We introduce a framework for repairing unsafe NNs w.r.t. safety specification.
Our method is able to search for a new, safe NN representation, by modifying only a few of its weight values.
We perform extensive experiments which demonstrate the capability of our proposed framework to yield safe NNs w.r.t.
arXiv Detail & Related papers (2022-07-17T12:42:24Z) - Reachability In Simple Neural Networks [2.7195102129095003]
We show that NP-hardness already holds for restricted classes of simple specifications and neural networks.
We give a thorough discussion and outlook of possible extensions for this direction of research on neural network verification.
arXiv Detail & Related papers (2022-03-15T14:25:44Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
The critical node problem (CNP) aims to find a set of critical nodes from a network whose deletion maximally degrades the pairwise connectivity of the residual network.
This work proposes a feature importance-aware graph attention network for node representation.
It combines it with dueling double deep Q-network to create an end-to-end algorithm to solve CNP for the first time.
arXiv Detail & Related papers (2021-12-03T14:23:05Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Bounding the Complexity of Formally Verifying Neural Networks: A
Geometric Approach [1.9493449206135296]
We consider formally verifying the complexity of ReLU Neural Networks (NNs)
In this paper, we show that for two different NNs, the verification problem satisfies two different types of constraints.
Both algorithms efficiently translate the NN parameters into the effect of the NN's architecture by means of hyperplanes.
arXiv Detail & Related papers (2020-12-22T00:29:54Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Robust Pruning at Initialization [61.30574156442608]
A growing need for smaller, energy-efficient, neural networks to be able to use machine learning applications on devices with limited computational resources.
For Deep NNs, such procedures remain unsatisfactory as the resulting pruned networks can be difficult to train and, for instance, they do not prevent one layer from being fully pruned.
arXiv Detail & Related papers (2020-02-19T17:09:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.