Towards Hate Speech Detection at Large via Deep Generative Modeling
- URL: http://arxiv.org/abs/2005.06370v1
- Date: Wed, 13 May 2020 15:25:59 GMT
- Title: Towards Hate Speech Detection at Large via Deep Generative Modeling
- Authors: Tomer Wullach, Amir Adler, Einat Minkov
- Abstract summary: Hate speech detection is a critical problem in social media platforms.
We present a dataset of 1 million realistic hate and non-hate sequences, produced by a deep generative language model.
We demonstrate consistent and significant performance improvements across five public hate speech datasets.
- Score: 4.080068044420974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hate speech detection is a critical problem in social media platforms, being
often accused for enabling the spread of hatred and igniting physical violence.
Hate speech detection requires overwhelming resources including
high-performance computing for online posts and tweets monitoring as well as
thousands of human experts for daily screening of suspected posts or tweets.
Recently, Deep Learning (DL)-based solutions have been proposed for automatic
detection of hate speech, using modest-sized training datasets of few thousands
of hate speech sequences. While these methods perform well on the specific
datasets, their ability to detect new hate speech sequences is limited and has
not been investigated. Being a data-driven approach, it is well known that DL
surpasses other methods whenever a scale-up in train dataset size and diversity
is achieved. Therefore, we first present a dataset of 1 million realistic hate
and non-hate sequences, produced by a deep generative language model. We
further utilize the generated dataset to train a well-studied DL-based hate
speech detector, and demonstrate consistent and significant performance
improvements across five public hate speech datasets. Therefore, the proposed
solution enables high sensitivity detection of a very large variety of hate
speech sequences, paving the way to a fully automatic solution.
Related papers
- A Target-Aware Analysis of Data Augmentation for Hate Speech Detection [3.858155067958448]
Hate speech is one of the main threats posed by the widespread use of social networks.
We investigate the possibility of augmenting existing data with generative language models, reducing target imbalance.
For some hate categories such as origin, religion, and disability, hate speech classification using augmented data for training improves by more than 10% F1 over the no augmentation baseline.
arXiv Detail & Related papers (2024-10-10T15:46:27Z) - Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models [84.8919069953397]
Self-TAught Recognizer (STAR) is an unsupervised adaptation framework for speech recognition systems.
We show that STAR achieves an average of 13.5% relative reduction in word error rate across 14 target domains.
STAR exhibits high data efficiency that only requires less than one-hour unlabeled data.
arXiv Detail & Related papers (2024-05-23T04:27:11Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
Generalization is a main issue for current audio deepfake detectors.
In this paper we study the potential of large-scale pre-trained models for audio deepfake detection.
arXiv Detail & Related papers (2024-05-03T15:27:11Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
A major limitation of existing methods is that hate speech detection is a highly contextual problem.
Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks.
Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech.
arXiv Detail & Related papers (2024-01-07T00:39:33Z) - Hate Speech Detection in Limited Data Contexts using Synthetic Data
Generation [1.9506923346234724]
We propose a data augmentation approach that addresses the problem of lack of data for online hate speech detection in limited data contexts.
We present three methods to synthesize new examples of hate speech data in a target language that retains the hate sentiment in the original examples but transfers the hate targets.
Our findings show that a model trained on synthetic data performs comparably to, and in some cases outperforms, a model trained only on the samples available in the target domain.
arXiv Detail & Related papers (2023-10-04T15:10:06Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Character-level HyperNetworks for Hate Speech Detection [3.50640918825436]
Automated methods for hate speech detection typically employ state-of-the-art deep learning (DL)-based text classifiers.
We present HyperNetworks for hate speech detection, a special class of DL networks whose weights are regulated by a small-scale auxiliary network.
We achieve performance that is comparable or better than state-of-the-art language models, which are pre-trained and orders of magnitude larger.
arXiv Detail & Related papers (2021-11-11T17:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.