Contextuality as the Key to understand Quantum Paradoxes
- URL: http://arxiv.org/abs/2005.06864v1
- Date: Thu, 14 May 2020 10:37:10 GMT
- Title: Contextuality as the Key to understand Quantum Paradoxes
- Authors: Marian Kupczynski
- Abstract summary: In these talks, addressed to participants with a limited knowledge of quantum foundations, we defined locality, causality, randomness, counterfactual definiteness.
In particular we discussed in great detail various Bell-type inequalities and the implications of their violation in spin polarisation correlation experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This short note is an introduction to the slides from our talks given in 2018
during the Advanced School of Quantum Foundations and Quantum Computation in
Joao Pessoa , Brazil. In these talks, addressed to participants with a limited
knowledge of quantum foundations, we defined locality, causality, randomness,
counterfactual definiteness and we explained EPR-Bohm paradoxes. In particular
we discussed in great detail various Bell-type inequalities and the
implications of their violation in spin polarisation correlation experiments.
Finally we explained why and how the predictive completeness of quantum
mechanics may be tested by more careful examination of the time-series of
experimental data
Related papers
- Consequences of the single-pair measurement of the Bell parameter [0.0]
Bell inequalities represent a milestone for contemporary Physics.
Strong debate is still ongoing on the actual meaning of Bell inequality tests.
Recent work achieves for the first time an experimental estimation of the entire Bell-CHSH parameter from a single entangled pair.
arXiv Detail & Related papers (2024-09-04T08:11:40Z) - Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Can the double-slit experiment distinguish between quantum
interpretations? [0.0]
There are various predictions for joint distribution of particle detection events on a screen which are derived from different formulations and interpretations of the quantum theory.
Although the differences are typically small, our studies show that these predictions can be experimentally distinguished by an unconventional double-slit configuration.
This experiment would enrich our understanding of the foundations of quantum mechanics.
arXiv Detail & Related papers (2023-01-06T18:35:58Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.