Keystroke Biometrics in Response to Fake News Propagation in a Global
Pandemic
- URL: http://arxiv.org/abs/2005.07688v2
- Date: Mon, 18 May 2020 06:23:56 GMT
- Title: Keystroke Biometrics in Response to Fake News Propagation in a Global
Pandemic
- Authors: Aythami Morales and Alejandro Acien and Julian Fierrez and John V.
Monaco and Ruben Tolosana and Ruben Vera-Rodriguez and Javier Ortega-Garcia
- Abstract summary: This work proposes and analyzes the use of keystroke biometrics for content de-anonymization.
Fake news have become a powerful tool to manipulate public opinion, especially during major events.
- Score: 77.79066811371978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes and analyzes the use of keystroke biometrics for content
de-anonymization. Fake news have become a powerful tool to manipulate public
opinion, especially during major events. In particular, the massive spread of
fake news during the COVID-19 pandemic has forced governments and companies to
fight against missinformation. In this context, the ability to link multiple
accounts or profiles that spread such malicious content on the Internet while
hiding in anonymity would enable proactive identification and blacklisting.
Behavioral biometrics can be powerful tools in this fight. In this work, we
have analyzed how the latest advances in keystroke biometric recognition can
help to link behavioral typing patterns in experiments involving 100,000 users
and more than 1 million typed sequences. Our proposed system is based on
Recurrent Neural Networks adapted to the context of content de-anonymization.
Assuming the challenge to link the typed content of a target user in a pool of
candidate profiles, our results show that keystroke recognition can be used to
reduce the list of candidate profiles by more than 90%. In addition, when
keystroke is combined with auxiliary data (such as location), our system
achieves a Rank-1 identification performance equal to 52.6% and 10.9% for a
background candidate list composed of 1K and 100K profiles, respectively.
Related papers
- How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - Unveiling the Digital Fingerprints: Analysis of Internet attacks based on website fingerprints [0.0]
We show that using the newest machine learning algorithms an attacker can deanonymize Tor traffic by applying such techniques.
We capture network packets across 11 days, while users navigate specific web pages, recording data in.pcapng format through the Wireshark network capture tool.
arXiv Detail & Related papers (2024-09-01T18:44:40Z) - Unveiling Social Media Comments with a Novel Named Entity Recognition System for Identity Groups [2.5849042763002426]
We develop a Named Entity Recognition (NER) System for Identity Groups.
Our tool not only detects whether a sentence contains an attack but also tags the sentence tokens corresponding to the mentioned group.
We tested the utility of our tool in a case study on social media, annotating and comparing comments from Facebook related to news mentioning identity groups.
arXiv Detail & Related papers (2024-05-13T19:33:18Z) - Protect Your Score: Contact Tracing With Differential Privacy Guarantees [68.53998103087508]
We argue that privacy concerns currently hold deployment back.
We propose a contact tracing algorithm with differential privacy guarantees against this attack.
Especially for realistic test scenarios, we achieve a two to ten-fold reduction in the infection rate of the virus.
arXiv Detail & Related papers (2023-12-18T11:16:33Z) - Keystroke Verification Challenge (KVC): Biometric and Fairness Benchmark
Evaluation [21.63351064421652]
Keystroke dynamics (KD) for biometric verification has several advantages.
KD is among the most discriminative behavioral traits.
We present a new experimental framework to benchmark KD-based biometric verification performance and fairness.
arXiv Detail & Related papers (2023-11-10T11:23:28Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
We introduce a novel problem of PRofiling Adversarial aTtacks (PRAT)
Given an adversarial example, the objective of PRAT is to identify the attack used to generate it.
We use AID to devise a novel framework for the PRAT objective.
arXiv Detail & Related papers (2023-09-20T07:42:51Z) - Secure and Privacy Preserving Proxy Biometrics Identities [25.272389610447856]
This work proposes a novel approach for generating new artificial fingerprints also called proxy fingerprints.
These proxy biometrics can be generated from original ones only with the help of a user-specific key.
Using the proposed approach a proxy dataset is generated from samples belonging to Anguli fingerprint database.
Matching experiments were performed on the new set which is 5 times larger than the original, and it was found that their performance is at par with 0 FAR and 0 FRR in the stolen key, safe key scenarios.
arXiv Detail & Related papers (2022-12-21T07:02:11Z) - TypeNet: Deep Learning Keystroke Biometrics [77.80092630558305]
We introduce TypeNet, a Recurrent Neural Network trained with a moderate number of keystrokes per identity.
With 5 gallery sequences and test sequences of length 50, TypeNet achieves state-of-the-art keystroke biometric authentication performance.
Our experiments demonstrate a moderate increase in error with up to 100,000 subjects, demonstrating the potential of TypeNet to operate at an Internet scale.
arXiv Detail & Related papers (2021-01-14T12:49:09Z) - TypeNet: Scaling up Keystroke Biometrics [79.19779718346128]
We first analyze to what extent our method based on a Recurrent Neural Network (RNN) is able to authenticate users when the amount of data per user is scarce.
With 1K users for testing the network, a population size comparable to previous works, TypeNet obtains an equal error rate of 4.8%.
Using the same amount of data per user, as the number of test users is scaled up to 100K, the performance in comparison to 1K decays relatively by less than 5%.
arXiv Detail & Related papers (2020-04-07T18:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.