Semantic Photo Manipulation with a Generative Image Prior
- URL: http://arxiv.org/abs/2005.07727v2
- Date: Sat, 12 Sep 2020 19:53:55 GMT
- Title: Semantic Photo Manipulation with a Generative Image Prior
- Authors: David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou,
Jun-Yan Zhu, Antonio Torralba
- Abstract summary: GANs are able to synthesize images conditioned on inputs such as user sketch, text, or semantic labels.
It is hard for GANs to precisely reproduce an input image.
In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image.
Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image.
- Score: 86.01714863596347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent success of GANs in synthesizing images conditioned on
inputs such as a user sketch, text, or semantic labels, manipulating the
high-level attributes of an existing natural photograph with GANs is
challenging for two reasons. First, it is hard for GANs to precisely reproduce
an input image. Second, after manipulation, the newly synthesized pixels often
do not fit the original image. In this paper, we address these issues by
adapting the image prior learned by GANs to image statistics of an individual
image. Our method can accurately reconstruct the input image and synthesize new
content, consistent with the appearance of the input image. We demonstrate our
interactive system on several semantic image editing tasks, including
synthesizing new objects consistent with background, removing unwanted objects,
and changing the appearance of an object. Quantitative and qualitative
comparisons against several existing methods demonstrate the effectiveness of
our method.
Related papers
- Enhanced Unsupervised Image-to-Image Translation Using Contrastive Learning and Histogram of Oriented Gradients [0.0]
This paper proposes an enhanced unsupervised image-to-image translation method based on the Contrastive Unpaired Translation (CUT) model.
This novel approach ensures the preservation of the semantic structure of images, even without semantic labels.
The method was tested on translating synthetic game environments from GTA5 dataset to realistic urban scenes in cityscapes dataset.
arXiv Detail & Related papers (2024-09-24T12:44:27Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
We propose a new class of GAN discriminators for semantic image synthesis that generates highly realistic images.
Our model, which we dub DP-SIMS, achieves state-of-the-art results in terms of image quality and consistency with the input label maps on ADE-20K, COCO-Stuff, and Cityscapes.
arXiv Detail & Related papers (2023-12-20T09:39:19Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
Controllable semantic image editing enables a user to change entire image attributes with few clicks.
Current approaches often suffer from attribute edits that are entangled, global image identity changes, and diminished photo-realism.
We propose quantitative evaluation strategies for measuring controllable editing performance, unlike prior work which primarily focuses on qualitative evaluation.
arXiv Detail & Related papers (2021-02-01T21:38:36Z) - SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing
Objects [127.7627687126465]
SESAME is a novel generator-discriminator pair for Semantic Editing of Scenes by Adding, Manipulating or Erasing objects.
In our setup, the user provides the semantic labels of the areas to be edited and the generator synthesizes the corresponding pixels.
We evaluate our model on a diverse set of datasets and report state-of-the-art performance on two tasks.
arXiv Detail & Related papers (2020-04-10T10:19:19Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.