FuCiTNet: Improving the generalization of deep learning networks by the
fusion of learned class-inherent transformations
- URL: http://arxiv.org/abs/2005.08235v1
- Date: Sun, 17 May 2020 12:04:20 GMT
- Title: FuCiTNet: Improving the generalization of deep learning networks by the
fusion of learned class-inherent transformations
- Authors: Manuel Rey-Area, Emilio Guirado, Siham Tabik and Javier Ruiz-Hidalgo
- Abstract summary: It is widely known that very small datasets produce overfitting in Deep Neural Networks (DNNs)
This work presents a new approach, independent but complementary to the previous mentioned techniques, for improving the generalization of DNNs on very small datasets.
- Score: 1.8013893443965217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is widely known that very small datasets produce overfitting in Deep
Neural Networks (DNNs), i.e., the network becomes highly biased to the data it
has been trained on. This issue is often alleviated using transfer learning,
regularization techniques and/or data augmentation. This work presents a new
approach, independent but complementary to the previous mentioned techniques,
for improving the generalization of DNNs on very small datasets in which the
involved classes share many visual features. The proposed methodology, called
FuCiTNet (Fusion Class inherent Transformations Network), inspired by GANs,
creates as many generators as classes in the problem. Each generator, $k$,
learns the transformations that bring the input image into the k-class domain.
We introduce a classification loss in the generators to drive the leaning of
specific k-class transformations. Our experiments demonstrate that the proposed
transformations improve the generalization of the classification model in three
diverse datasets.
Related papers
- Generalization emerges from local optimization in a self-organized learning network [0.0]
We design and analyze a new paradigm for building supervised learning networks, driven only by local optimization rules without relying on a global error function.
Our network stores new knowledge in the nodes accurately and instantaneously, in the form of a lookup table.
We show on numerous examples of classification tasks that the networks generated by our algorithm systematically reach such a state of perfect generalization when the number of learned examples becomes sufficiently large.
We report on the dynamics of the change of state and show that it is abrupt and has the distinctive characteristics of a first order phase transition, a phenomenon already observed for traditional learning networks and known as grokking.
arXiv Detail & Related papers (2024-10-03T15:32:08Z) - Do Deep Networks Transfer Invariances Across Classes? [123.84237389985236]
We show how a generative approach for learning the nuisance transformations can help transfer invariances across classes.
Our results provide one explanation for why classifiers generalize poorly on unbalanced and longtailed distributions.
arXiv Detail & Related papers (2022-03-18T04:38:18Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - Feature transforms for image data augmentation [74.12025519234153]
In image classification, many augmentation approaches utilize simple image manipulation algorithms.
In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches.
Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method.
arXiv Detail & Related papers (2022-01-24T14:12:29Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
We show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance.
Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling.
We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks.
arXiv Detail & Related papers (2021-12-23T03:52:33Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
A different idea has been recently proposed, named Friendly Training, which consists in altering the input data by adding an automatically estimated perturbation.
We revisit and extend this idea inspired by the effectiveness of neural generators in the context of Adversarial Machine Learning.
We propose an auxiliary multi-layer network that is responsible of altering the input data to make them easier to be handled by the classifier.
arXiv Detail & Related papers (2021-12-18T16:59:35Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - More Is More -- Narrowing the Generalization Gap by Adding
Classification Heads [8.883733362171032]
We introduce an architecture enhancement for existing neural network models based on input transformations, termed 'TransNet'
Our model can be employed during training time only and then pruned for prediction, resulting in an equivalent architecture to the base model.
arXiv Detail & Related papers (2021-02-09T16:30:33Z) - Collaborative Method for Incremental Learning on Classification and
Generation [32.07222897378187]
We introduce a novel algorithm, Incremental Class Learning with Attribute Sharing (ICLAS), for incremental class learning with deep neural networks.
As one of its component, incGAN, can generate images with increased variety compared with the training data.
Under challenging environment of data deficiency, ICLAS incrementally trains classification and the generation networks.
arXiv Detail & Related papers (2020-10-29T06:34:53Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.