A Survey on Unknown Presentation Attack Detection for Fingerprint
- URL: http://arxiv.org/abs/2005.08337v1
- Date: Sun, 17 May 2020 18:46:23 GMT
- Title: A Survey on Unknown Presentation Attack Detection for Fingerprint
- Authors: Jag Mohan Singh, Ahmed Madhun, Guoqiang Li, Raghavendra Ramachandra
- Abstract summary: Biometrics researchers have developed Presentation Attack Detection (PAD) methods as a countermeasure to presentation attacks (PA)
PAD is usually done by training a machine learning classifier for known attacks for a given dataset, and they achieve high accuracy.
We present a comprehensive survey on existing PAD algorithms for fingerprint recognition systems, specifically from the standpoint of detecting unknown PAD.
- Score: 4.424609902825527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fingerprint recognition systems are widely deployed in various real-life
applications as they have achieved high accuracy. The widely used applications
include border control, automated teller machine (ATM), and attendance
monitoring systems. However, these critical systems are prone to spoofing
attacks (a.k.a presentation attacks (PA)). PA for fingerprint can be performed
by presenting gummy fingers made from different materials such as silicone,
gelatine, play-doh, ecoflex, 2D printed paper, 3D printed material, or latex.
Biometrics Researchers have developed Presentation Attack Detection (PAD)
methods as a countermeasure to PA. PAD is usually done by training a machine
learning classifier for known attacks for a given dataset, and they achieve
high accuracy in this task. However, generalizing to unknown attacks is an
essential problem from applicability to real-world systems, mainly because
attacks cannot be exhaustively listed in advance. In this survey paper, we
present a comprehensive survey on existing PAD algorithms for fingerprint
recognition systems, specifically from the standpoint of detecting unknown PAD.
We categorize PAD algorithms, point out their advantages/disadvantages, and
future directions for this area.
Related papers
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Face Presentation Attack Detection [59.05779913403134]
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment.
However, its vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure applicational scenarios.
arXiv Detail & Related papers (2022-12-07T14:51:17Z) - Fingerprint recognition with embedded presentation attacks detection:
are we ready? [6.0168714922994075]
The diffusion of fingerprint verification systems for security applications makes it urgent to investigate the embedding of software-based presentation attack algorithms (PAD) into such systems.
Current research did not state much about their effectiveness when embedded in fingerprint verification systems.
This paper proposes a performance simulator based on the probabilistic modeling of the relationships among the Receiver Operating Characteristics (ROC) of the two individual systems when PAD and verification stages are implemented sequentially.
arXiv Detail & Related papers (2021-10-20T13:53:16Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
We have proposed a deep learning-based network termed as textitMixNet to detect presentation attacks.
The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category.
arXiv Detail & Related papers (2020-10-25T23:01:13Z) - On the Generalisation Capabilities of Fingerprint Presentation Attack
Detection Methods in the Short Wave Infrared Domain [13.351759885287526]
Presentation attack detection methods are of utmost importance in order to distinguish between bona fide and attack presentations.
We evaluate the generalisability of multiple PAD algorithms on a dataset of 19,711 bona fide and 4,339 PA samples, including 45 different PAI species.
arXiv Detail & Related papers (2020-10-19T14:50:24Z) - Anomaly Detection with Convolutional Autoencoders for Fingerprint
Presentation Attack Detection [11.879849130630406]
Presentation attack detection (PAD) methods are used to determine whether samples stem from a bona fide subject or from a presentation attack instrument (PAI)
We propose a new PAD technique based on autoencoders (AEs) trained only on bona fide samples (i.e. one-class) captured in the short wave infrared domain.
arXiv Detail & Related papers (2020-08-18T15:33:41Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
We propose a robust presentation attack detection (PAD) solution with improved cross-material and cross-sensor generalization.
Specifically, we build on any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization.
We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD.
arXiv Detail & Related papers (2020-04-06T19:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.