Relative Positional Encoding for Speech Recognition and Direct
Translation
- URL: http://arxiv.org/abs/2005.09940v1
- Date: Wed, 20 May 2020 09:53:06 GMT
- Title: Relative Positional Encoding for Speech Recognition and Direct
Translation
- Authors: Ngoc-Quan Pham, Thanh-Le Ha, Tuan-Nam Nguyen, Thai-Son Nguyen,
Elizabeth Salesky, Sebastian Stueker, Jan Niehues and Alexander Waibel
- Abstract summary: We adapt the relative position encoding scheme to the Speech Transformer.
As a result, the network can better adapt to the variable distributions present in speech data.
- Score: 72.64499573561922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer models are powerful sequence-to-sequence architectures that are
capable of directly mapping speech inputs to transcriptions or translations.
However, the mechanism for modeling positions in this model was tailored for
text modeling, and thus is less ideal for acoustic inputs. In this work, we
adapt the relative position encoding scheme to the Speech Transformer, where
the key addition is relative distance between input states in the
self-attention network. As a result, the network can better adapt to the
variable distributions present in speech data. Our experiments show that our
resulting model achieves the best recognition result on the Switchboard
benchmark in the non-augmentation condition, and the best published result in
the MuST-C speech translation benchmark. We also show that this model is able
to better utilize synthetic data than the Transformer, and adapts better to
variable sentence segmentation quality for speech translation.
Related papers
- Syntax-guided Localized Self-attention by Constituency Syntactic
Distance [26.141356981833862]
We propose a syntax-guided localized self-attention for Transformer.
It allows incorporating directly grammar structures from an external constituency.
Experimental results show that our model could consistently improve translation performance.
arXiv Detail & Related papers (2022-10-21T06:37:25Z) - M-Adapter: Modality Adaptation for End-to-End Speech-to-Text Translation [66.92823764664206]
We propose M-Adapter, a novel Transformer-based module, to adapt speech representations to text.
While shrinking the speech sequence, M-Adapter produces features desired for speech-to-text translation.
Our experimental results show that our model outperforms a strong baseline by up to 1 BLEU.
arXiv Detail & Related papers (2022-07-03T04:26:53Z) - Improving Transformer-based Conversational ASR by Inter-Sentential
Attention Mechanism [20.782319059183173]
We propose to explicitly model the inter-sentential information in a Transformer based end-to-end architecture for conversational speech recognition.
We show the effectiveness of our proposed method on several open-source dialogue corpora and the proposed method consistently improved the performance from the utterance-level Transformer-based ASR models.
arXiv Detail & Related papers (2022-07-02T17:17:47Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - Knowledge Distillation from BERT Transformer to Speech Transformer for
Intent Classification [66.62686601948455]
We exploit the scope of the transformer distillation method that is specifically designed for knowledge distillation from a transformer based language model to a transformer based speech model.
We achieve an intent classification accuracy of 99.10% and 88.79% for Fluent speech corpus and ATIS database, respectively.
arXiv Detail & Related papers (2021-08-05T13:08:13Z) - RealTranS: End-to-End Simultaneous Speech Translation with Convolutional
Weighted-Shrinking Transformer [33.876412404781846]
RealTranS is an end-to-end model for simultaneous speech translation.
It maps speech features into text space with a weighted-shrinking operation and a semantic encoder.
Experiments show that RealTranS with the Wait-K-Stride-N strategy outperforms prior end-to-end models.
arXiv Detail & Related papers (2021-06-09T06:35:46Z) - Streaming Simultaneous Speech Translation with Augmented Memory
Transformer [29.248366441276662]
Transformer-based models have achieved state-of-the-art performance on speech translation tasks.
We propose an end-to-end transformer-based sequence-to-sequence model, equipped with an augmented memory transformer encoder.
arXiv Detail & Related papers (2020-10-30T18:28:42Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z) - Segatron: Segment-Aware Transformer for Language Modeling and
Understanding [79.84562707201323]
We propose a segment-aware Transformer (Segatron) to generate better contextual representations from sequential tokens.
We first introduce the segment-aware mechanism to Transformer-XL, which is a popular Transformer-based language model.
We find that our method can further improve the Transformer-XL base model and large model, achieving 17.1 perplexity on the WikiText-103 dataset.
arXiv Detail & Related papers (2020-04-30T17:38:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.