Text-to-Text Pre-Training for Data-to-Text Tasks
- URL: http://arxiv.org/abs/2005.10433v3
- Date: Fri, 9 Jul 2021 00:42:32 GMT
- Title: Text-to-Text Pre-Training for Data-to-Text Tasks
- Authors: Mihir Kale, Abhinav Rastogi
- Abstract summary: We study the pre-train + fine-tune strategy for data-to-text tasks.
Our experiments indicate that text-to-text pre-training in the form of T5 enables simple, end-to-end transformer based models.
- Score: 9.690158790639131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the pre-train + fine-tune strategy for data-to-text tasks. Our
experiments indicate that text-to-text pre-training in the form of T5, enables
simple, end-to-end transformer based models to outperform pipelined neural
architectures tailored for data-to-text generation, as well as alternative
language model based pre-training techniques such as BERT and GPT-2.
Importantly, T5 pre-training leads to better generalization, as evidenced by
large improvements on out-of-domain test sets. We hope our work serves as a
useful baseline for future research, as transfer learning becomes ever more
prevalent for data-to-text tasks.
Related papers
- ViHateT5: Enhancing Hate Speech Detection in Vietnamese With A Unified Text-to-Text Transformer Model [0.0]
We introduce ViHateT5, a T5-based model pre-trained on our proposed large-scale domain-specific dataset named VOZ-HSD.
By harnessing the power of a text-to-text architecture, ViHateT5 can tackle multiple tasks using a unified model and achieve state-of-the-art performance across all standard HSD benchmarks in Vietnamese.
arXiv Detail & Related papers (2024-05-23T03:31:50Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Investigating Pre-trained Language Models on Cross-Domain Datasets, a
Step Closer to General AI [0.8889304968879164]
We investigate the ability of pre-trained language models to generalize to different non-language tasks.
The four pre-trained models that we used, T5, BART, BERT, and GPT-2 achieve outstanding results.
arXiv Detail & Related papers (2023-06-21T11:55:17Z) - GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content [27.901155229342375]
We present a novel approach for detecting ChatGPT-generated vs. human-written text using language models.
Our models achieved remarkable results, with an accuracy of over 97% on the test dataset, as evaluated through various metrics.
arXiv Detail & Related papers (2023-05-13T17:12:11Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Evaluation of Transfer Learning for Polish with a Text-to-Text Model [54.81823151748415]
We introduce a new benchmark for assessing the quality of text-to-text models for Polish.
The benchmark consists of diverse tasks and datasets: KLEJ benchmark adapted for text-to-text, en-pl translation, summarization, and question answering.
We present plT5 - a general-purpose text-to-text model for Polish that can be fine-tuned on various Natural Language Processing (NLP) tasks with a single training objective.
arXiv Detail & Related papers (2022-05-18T09:17:14Z) - DSGPT: Domain-Specific Generative Pre-Training of Transformers for Text
Generation in E-commerce Title and Review Summarization [14.414693156937782]
We propose a novel domain-specific generative pre-training (DS-GPT) method for text generation.
We apply it to the product titleand review summarization problems on E-commerce mobile display.
arXiv Detail & Related papers (2021-12-15T19:02:49Z) - mT6: Multilingual Pretrained Text-to-Text Transformer with Translation
Pairs [51.67970832510462]
We improve multilingual text-to-text transfer Transformer with translation pairs (mT6)
We explore three cross-lingual text-to-text pre-training tasks, namely, machine translation, translation pair span corruption, and translation span corruption.
Experimental results show that the proposed mT6 improves cross-lingual transferability over mT5.
arXiv Detail & Related papers (2021-04-18T03:24:07Z) - Data-to-Text Generation with Iterative Text Editing [3.42658286826597]
We present a novel approach to data-to-text generation based on iterative text editing.
We first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task.
The output of the model is filtered by a simple and reranked with an off-the-shelf pre-trained language model.
arXiv Detail & Related papers (2020-11-03T13:32:38Z) - mT5: A massively multilingual pre-trained text-to-text transformer [60.0210636815514]
"Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on English-language NLP tasks.
We introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages.
arXiv Detail & Related papers (2020-10-22T17:58:14Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.