Few-shot Compositional Font Generation with Dual Memory
- URL: http://arxiv.org/abs/2005.10510v2
- Date: Thu, 16 Jul 2020 11:47:52 GMT
- Title: Few-shot Compositional Font Generation with Dual Memory
- Authors: Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee, Seonghyeon Kim, and
Hwalsuk Lee
- Abstract summary: We propose a novel font generation framework, named Dual Memory-augmented Font Generation Network (DM-Font)
We employ memory components and global-context awareness in the generator to take advantage of the compositionality.
In the experiments on Korean-handwriting fonts and Thai-printing fonts, we observe that our method generates a significantly better quality of samples with faithful stylization.
- Score: 16.967987801167514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating a new font library is a very labor-intensive and time-consuming
job for glyph-rich scripts. Despite the remarkable success of existing font
generation methods, they have significant drawbacks; they require a large
number of reference images to generate a new font set, or they fail to capture
detailed styles with only a few samples. In this paper, we focus on
compositional scripts, a widely used letter system in the world, where each
glyph can be decomposed by several components. By utilizing the
compositionality of compositional scripts, we propose a novel font generation
framework, named Dual Memory-augmented Font Generation Network (DM-Font), which
enables us to generate a high-quality font library with only a few samples. We
employ memory components and global-context awareness in the generator to take
advantage of the compositionality. In the experiments on Korean-handwriting
fonts and Thai-printing fonts, we observe that our method generates a
significantly better quality of samples with faithful stylization compared to
the state-of-the-art generation methods quantitatively and qualitatively.
Source code is available at https://github.com/clovaai/dmfont.
Related papers
- DeepCalliFont: Few-shot Chinese Calligraphy Font Synthesis by
Integrating Dual-modality Generative Models [20.76773399161289]
Few-shot font generation, especially for Chinese calligraphy fonts, is a challenging and ongoing problem.
We propose a novel model, DeepCalliFont, for few-shot Chinese calligraphy font synthesis by integrating dual-modality generative models.
arXiv Detail & Related papers (2023-12-16T04:23:12Z) - VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
We propose a VQGAN-based framework (i.e., VQ-Font) to enhance glyph fidelity through token prior refinement and structure-aware enhancement.
Specifically, we pre-train a VQGAN to encapsulate font token prior within a codebook. Subsequently, VQ-Font refines the synthesized glyphs with the codebook to eliminate the domain gap between synthesized and real-world strokes.
arXiv Detail & Related papers (2023-08-27T06:32:20Z) - CF-Font: Content Fusion for Few-shot Font Generation [63.79915037830131]
We propose a content fusion module (CFM) to project the content feature into a linear space defined by the content features of basis fonts.
Our method also allows to optimize the style representation vector of reference images.
We have evaluated our method on a dataset of 300 fonts with 6.5k characters each.
arXiv Detail & Related papers (2023-03-24T14:18:40Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
We propose a novel one-shot font generation method based on a diffusion model, named Diff-Font.
The proposed model aims to generate the entire font library by giving only one sample as the reference.
The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation.
arXiv Detail & Related papers (2022-12-12T13:51:50Z) - Few-Shot Font Generation by Learning Fine-Grained Local Styles [90.39288370855115]
Few-shot font generation (FFG) aims to generate a new font with a few examples.
We propose a new font generation approach by learning 1) the fine-grained local styles from references, and 2) the spatial correspondence between the content and reference glyphs.
arXiv Detail & Related papers (2022-05-20T05:07:05Z) - XMP-Font: Self-Supervised Cross-Modality Pre-training for Few-Shot Font
Generation [13.569449355929574]
We propose a self-supervised cross-modality pre-training strategy and a cross-modality transformer-based encoder.
The encoder is conditioned jointly on the glyph image and the corresponding stroke labels.
It only requires one reference glyph and achieves the lowest rate of bad cases in the few-shot font generation task 28% lower than the second best.
arXiv Detail & Related papers (2022-04-11T13:34:40Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
We propose a deep generative model that performs typography analysis and font reconstruction.
Our approach enables us to massively scale up the number of character types we can effectively model.
We evaluate on the task of font reconstruction over various datasets representing character types of many languages.
arXiv Detail & Related papers (2021-09-10T20:37:43Z) - A Multi-Implicit Neural Representation for Fonts [79.6123184198301]
font-specific discontinuities like edges and corners are difficult to represent using neural networks.
We introduce textitmulti-implicits to represent fonts as a permutation-in set of learned implict functions, without losing features.
arXiv Detail & Related papers (2021-06-12T21:40:11Z) - Few-Shot Font Generation with Deep Metric Learning [33.12829580813688]
The proposed framework introduces deep metric learning to style encoders.
We performed experiments using black-and-white and shape-distinctive font datasets.
arXiv Detail & Related papers (2020-11-04T10:12:10Z) - Few-shot Font Generation with Localized Style Representations and
Factorization [23.781619323447003]
We propose a novel font generation method by learning localized styles, namely component-wise style representations, instead of universal styles.
Our method shows remarkably better few-shot font generation results (with only 8 reference glyph images) than other state-of-the-arts.
arXiv Detail & Related papers (2020-09-23T10:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.