Medical Image Generation using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2005.10687v1
- Date: Tue, 19 May 2020 20:31:57 GMT
- Title: Medical Image Generation using Generative Adversarial Networks
- Authors: Nripendra Kumar Singh, Khalid Raza
- Abstract summary: Generative adversarial networks (GANs) are unsupervised Deep Learning approach in the computer vision community.
GANs generate realistic medical images and corresponding annotations.
The various framework of GANs which gained popularity in the interpretation of medical images, such as Deep Convolutional GAN (DCGAN), Laplacian GAN (LAPGAN), pix2pix, CycleGAN, and unsupervised image-to-image translation model (UNIT)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are unsupervised Deep Learning
approach in the computer vision community which has gained significant
attention from the last few years in identifying the internal structure of
multimodal medical imaging data. The adversarial network simultaneously
generates realistic medical images and corresponding annotations, which proven
to be useful in many cases such as image augmentation, image registration,
medical image generation, image reconstruction, and image-to-image translation.
These properties bring the attention of the researcher in the field of medical
image analysis and we are witness of rapid adaption in many novel and
traditional applications. This chapter provides state-of-the-art progress in
GANs-based clinical application in medical image generation, and cross-modality
synthesis. The various framework of GANs which gained popularity in the
interpretation of medical images, such as Deep Convolutional GAN (DCGAN),
Laplacian GAN (LAPGAN), pix2pix, CycleGAN, and unsupervised image-to-image
translation model (UNIT), continue to improve their performance by
incorporating additional hybrid architecture, has been discussed. Further, some
of the recent applications of these frameworks for image reconstruction, and
synthesis, and future research directions in the area have been covered.
Related papers
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - BiomedJourney: Counterfactual Biomedical Image Generation by
Instruction-Learning from Multimodal Patient Journeys [99.7082441544384]
We present BiomedJourney, a novel method for counterfactual biomedical image generation by instruction-learning.
We use GPT-4 to process the corresponding imaging reports and generate a natural language description of disease progression.
The resulting triples are then used to train a latent diffusion model for counterfactual biomedical image generation.
arXiv Detail & Related papers (2023-10-16T18:59:31Z) - Exploring the Power of Generative Deep Learning for Image-to-Image
Translation and MRI Reconstruction: A Cross-Domain Review [0.0]
This research analyzes the different deep-learning methods used for image-to-image translation and reconstruction in the natural and medical imaging domains.
In the field of natural computer vision, we investigate the development and extension of various deep-learning generative models.
In comparison, we investigate the possible applications of deep learning to generative medical imaging problems, including medical image translation, MRI reconstruction, and multi-contrast MRI synthesis.
arXiv Detail & Related papers (2023-03-16T00:56:30Z) - Generation of Artificial CT Images using Patch-based Conditional
Generative Adversarial Networks [0.0]
We present an image generation approach that uses generative adversarial networks with a conditional discriminator.
We validate the feasibility of GAN-enhanced medical image generation on whole heart computed tomography (CT) images.
arXiv Detail & Related papers (2022-05-19T20:29:25Z) - Graph Convolutional Networks for Multi-modality Medical Imaging:
Methods, Architectures, and Clinical Applications [13.940158397866625]
Development of graph convolutional networks (GCNs) has spawned a new wave of research in medical imaging analysis.
GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis.
arXiv Detail & Related papers (2022-02-17T22:03:59Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results.
Medical imaging has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields.
We provide a review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues.
arXiv Detail & Related papers (2022-01-24T18:50:18Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
Generative Adversarial Networks (GANs) can generate realistic but novel samples, and thus effectively cover the real image distribution.
This thesis contains four GAN projects aiming to present such novel applications' clinical relevance in collaboration with physicians.
arXiv Detail & Related papers (2021-06-03T15:08:14Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.