CSNE: Conditional Signed Network Embedding
- URL: http://arxiv.org/abs/2005.10701v2
- Date: Mon, 25 May 2020 10:13:43 GMT
- Title: CSNE: Conditional Signed Network Embedding
- Authors: Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, Tijl De Bie
- Abstract summary: Signed networks encode positive and negative relations between entities such as friend/foe or trust/distrust.
Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function.
We introduce conditional signed network embedding (CSNE)
Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail.
- Score: 77.54225346953069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signed networks are mathematical structures that encode positive and negative
relations between entities such as friend/foe or trust/distrust. Recently,
several papers studied the construction of useful low-dimensional
representations (embeddings) of these networks for the prediction of missing
relations or signs. Existing embedding methods for sign prediction generally
enforce different notions of status or balance theories in their optimization
function. These theories, however, are often inaccurate or incomplete, which
negatively impacts method performance.
In this context, we introduce conditional signed network embedding (CSNE).
Our probabilistic approach models structural information about the signs in the
network separately from fine-grained detail. Structural information is
represented in the form of a prior, while the embedding itself is used for
capturing fine-grained information. These components are then integrated in a
rigorous manner. CSNE's accuracy depends on the existence of sufficiently
powerful structural priors for modelling signed networks, currently unavailable
in the literature. Thus, as a second main contribution, which we find to be
highly valuable in its own right, we also introduce a novel approach to
construct priors based on the Maximum Entropy (MaxEnt) principle. These priors
can model the \emph{polarity} of nodes (degree to which their links are
positive) as well as signed \emph{triangle counts} (a measure of the degree
structural balance holds to in a network).
Experiments on a variety of real-world networks confirm that CSNE outperforms
the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt
priors on their own, while less accurate than full CSNE, achieve accuracies
competitive with the state-of-the-art at very limited computational cost, thus
providing an excellent runtime-accuracy trade-off in resource-constrained
situations.
Related papers
- SE-SGformer: A Self-Explainable Signed Graph Transformer for Link Sign Prediction [8.820909397907274]
Signed Graph Neural Networks (SGNNs) have been shown to be effective in analyzing complex patterns in real-world situations where positive and negative links coexist.
SGNN models suffer from poor explainability, which limit their adoptions in critical scenarios that require understanding the rationale behind predictions.
We introduce a Self-Explainable Signed Graph transformer (SE-SGformer) framework, which outputs explainable information while ensuring high prediction accuracy.
arXiv Detail & Related papers (2024-08-16T13:54:50Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Privacy-preserving machine learning with tensor networks [37.01494003138908]
We show that tensor network architectures have especially prospective properties for privacy-preserving machine learning.
First, we describe a new privacy vulnerability that is present in feedforward neural networks, illustrating it in synthetic and real-world datasets.
We rigorously prove that such conditions are satisfied by tensor-network architectures.
arXiv Detail & Related papers (2022-02-24T19:04:35Z) - SigGAN : Adversarial Model for Learning Signed Relationships in Networks [2.0277446818410994]
We propose a Generative Adversarial Network (GAN) based model for signed networks, SigGAN.
It considers the requirements of signed networks, such as, integration of information from negative edges, high imbalance in number of positive and negative edges and structural balance theory.
arXiv Detail & Related papers (2022-01-17T14:53:30Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - MUSE: Multi-faceted Attention for Signed Network Embedding [4.442695760653947]
Signed network embedding is an approach to learn low-dimensional representations of nodes in signed networks with both positive and negative links.
We propose MUSE, a MUlti-faceted attention-based Signed network Embedding framework to tackle this problem.
arXiv Detail & Related papers (2021-04-29T16:09:35Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes)
We develop a unified framework, termed as Signed Infomax Hyperbolic Graph (textbfSIHG)
In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion.
arXiv Detail & Related papers (2020-11-25T05:09:03Z) - Probing Predictions on OOD Images via Nearest Categories [97.055916832257]
We study out-of-distribution (OOD) prediction behavior of neural networks when they classify images from unseen classes or corrupted images.
We introduce a new measure, nearest category generalization (NCG), where we compute the fraction of OOD inputs that are classified with the same label as their nearest neighbor in the training set.
We find that robust networks have consistently higher NCG accuracy than natural training, even when the OOD data is much farther away than the robustness radius.
arXiv Detail & Related papers (2020-11-17T07:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.