SODA: Detecting Covid-19 in Chest X-rays with Semi-supervised Open Set
Domain Adaptation
- URL: http://arxiv.org/abs/2005.11003v2
- Date: Wed, 5 Aug 2020 05:17:57 GMT
- Title: SODA: Detecting Covid-19 in Chest X-rays with Semi-supervised Open Set
Domain Adaptation
- Authors: Jieli Zhou, Baoyu Jing, Zeya Wang
- Abstract summary: We propose a novel domain adaptation method, Semi-supervised Open set Domain Adversarial network (SODA)
SODA achieves a leading classification performance compared with recent state-of-the-art models in separating COVID-19 with common pneumonia.
We also present initial results showing that SODA can produce better pathology localizations in the chest x-rays.
- Score: 5.6070625920019825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the shortage of COVID-19 viral testing kits and the long waiting time,
radiology imaging is used to complement the screening process and triage
patients into different risk levels. Deep learning based methods have taken an
active role in automatically detecting COVID-19 disease in chest x-ray images,
as witnessed in many recent works in early 2020. Most of these works first
train a Convolutional Neural Network (CNN) on an existing large-scale chest
x-ray image dataset and then fine-tune it with a COVID-19 dataset at a much
smaller scale. However, direct transfer across datasets from different domains
may lead to poor performance for CNN due to two issues, the large domain shift
present in the biomedical imaging datasets and the extremely small scale of the
COVID-19 chest x-ray dataset. In an attempt to address these two important
issues, we formulate the problem of COVID-19 chest x-ray image classification
in a semi-supervised open set domain adaptation setting and propose a novel
domain adaptation method, Semi-supervised Open set Domain Adversarial network
(SODA). SODA is able to align the data distributions across different domains
in a general domain space and also in a common subspace of source and target
data. In our experiments, SODA achieves a leading classification performance
compared with recent state-of-the-art models in separating COVID-19 with common
pneumonia. We also present initial results showing that SODA can produce better
pathology localizations in the chest x-rays.
Related papers
- Cross-Dataset Adaptation for Instrument Classification in Cataract
Surgery Videos [54.1843419649895]
State-of-the-art models, which perform this task well on a particular dataset, perform poorly when tested on another dataset.
We propose a novel end-to-end Unsupervised Domain Adaptation (UDA) method called the Barlow Adaptor.
In addition, we introduce a novel loss called the Barlow Feature Alignment Loss (BFAL) which aligns features across different domains.
arXiv Detail & Related papers (2023-07-31T18:14:18Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate.
Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays.
In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) without the need for labels and training data.
arXiv Detail & Related papers (2020-10-06T15:58:09Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Network is an automated end-to-end network for COVID-19 screening.
We manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset.
This database will be released to the research community.
arXiv Detail & Related papers (2020-08-03T12:52:23Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep
Learning [6.098524160574895]
In most of the patients, a chest x-ray contains abnormalities, such as consolidation, which are the results of COVID-19 viral pneumonia.
Research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset.
arXiv Detail & Related papers (2020-06-16T21:31:02Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
We present a novel deep learning approach for lung segmentation, a basic, but arduous task in the diagnostic pipeline.
Our method uses state-of-the-art fully convolutional neural networks in conjunction with an adversarial critic model.
It generalized well to CXR images of unseen datasets with different patient profiles, achieving a final DSCR of 97.5% on the JSRT dataset.
arXiv Detail & Related papers (2020-03-23T14:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.