Speaker diarization with session-level speaker embedding refinement
using graph neural networks
- URL: http://arxiv.org/abs/2005.11371v1
- Date: Fri, 22 May 2020 19:52:51 GMT
- Title: Speaker diarization with session-level speaker embedding refinement
using graph neural networks
- Authors: Jixuan Wang, Xiong Xiao, Jian Wu, Ranjani Ramamurthy, Frank Rudzicz,
Michael Brudno
- Abstract summary: We present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally.
The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated.
We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data.
- Score: 26.688724154619504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep speaker embedding models have been commonly used as a building block for
speaker diarization systems; however, the speaker embedding model is usually
trained according to a global loss defined on the training data, which could be
sub-optimal for distinguishing speakers locally in a specific meeting session.
In this work we present the first use of graph neural networks (GNNs) for the
speaker diarization problem, utilizing a GNN to refine speaker embeddings
locally using the structural information between speech segments inside each
session. The speaker embeddings extracted by a pre-trained model are remapped
into a new embedding space, in which the different speakers within a single
session are better separated. The model is trained for linkage prediction in a
supervised manner by minimizing the difference between the affinity matrix
constructed by the refined embeddings and the ground-truth adjacency matrix.
Spectral clustering is then applied on top of the refined embeddings. We show
that the clustering performance of the refined speaker embeddings outperforms
the original embeddings significantly on both simulated and real meeting data,
and our system achieves the state-of-the-art result on the NIST SRE 2000
CALLHOME database.
Related papers
- Online speaker diarization of meetings guided by speech separation [0.0]
Overlapped speech is notoriously problematic for speaker diarization systems.
We introduce a new speech separation-guided diarization scheme suitable for the online speaker diarization of long meeting recordings.
arXiv Detail & Related papers (2024-01-30T09:09:22Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
We propose a novel approach to leverage semantic information in speaker diarization systems.
We introduce spoken language understanding modules to extract speaker-related semantic information.
We present a novel framework to integrate these constraints into the speaker diarization pipeline.
arXiv Detail & Related papers (2023-09-19T09:13:30Z) - Self-supervised Speaker Diarization [19.111219197011355]
This study proposes an entirely unsupervised deep-learning model for speaker diarization.
Speaker embeddings are represented by an encoder trained in a self-supervised fashion using pairs of adjacent segments assumed to be of the same speaker.
arXiv Detail & Related papers (2022-04-08T16:27:14Z) - Improved Relation Networks for End-to-End Speaker Verification and
Identification [0.0]
Speaker identification systems are tasked to identify a speaker amongst a set of enrolled speakers given just a few samples.
We propose improved relation networks for speaker verification and few-shot (unseen) speaker identification.
Inspired by the use of prototypical networks in speaker verification, we train the model to classify samples in the current episode amongst all speakers present in the training set.
arXiv Detail & Related papers (2022-03-31T17:44:04Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
We reformulate overlapped speech diarization as a single-label prediction problem.
We propose the speaker embedding-aware neural diarization (SEND) system.
arXiv Detail & Related papers (2022-03-18T06:40:39Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings.
The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant cross-entropy based loss functions.
arXiv Detail & Related papers (2021-05-05T14:55:29Z) - Self-supervised Text-independent Speaker Verification using Prototypical
Momentum Contrastive Learning [58.14807331265752]
We show that better speaker embeddings can be learned by momentum contrastive learning.
We generalize the self-supervised framework to a semi-supervised scenario where only a small portion of the data is labeled.
arXiv Detail & Related papers (2020-12-13T23:23:39Z) - AutoSpeech: Neural Architecture Search for Speaker Recognition [108.69505815793028]
We propose the first neural architecture search approach approach for the speaker recognition tasks, named as AutoSpeech.
Our algorithm first identifies the optimal operation combination in a neural cell and then derives a CNN model by stacking the neural cell for multiple times.
Results demonstrate that the derived CNN architectures significantly outperform current speaker recognition systems based on VGG-M, ResNet-18, and ResNet-34 back-bones, while enjoying lower model complexity.
arXiv Detail & Related papers (2020-05-07T02:53:47Z) - Speaker Diarization with Lexical Information [59.983797884955]
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition.
We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy.
arXiv Detail & Related papers (2020-04-13T17:16:56Z) - End-to-End Neural Diarization: Reformulating Speaker Diarization as
Simple Multi-label Classification [45.38809571153867]
We propose the End-to-End Neural Diarization (EEND) in which a neural network directly outputs speaker diarization results.
By feeding multi-speaker recordings with corresponding speaker segment labels, our model can be easily adapted to real conversations.
arXiv Detail & Related papers (2020-02-24T14:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.