Fault-tolerant quantum speedup from constant depth quantum circuits
- URL: http://arxiv.org/abs/2005.11539v2
- Date: Sat, 30 May 2020 09:29:00 GMT
- Title: Fault-tolerant quantum speedup from constant depth quantum circuits
- Authors: Rawad Mezher, Joe Ghalbouni, Joseph Dgheim, and Damian Markham
- Abstract summary: We show that there is no classical algorithm which can sample according to its output distribution in $poly(n)$ time.
We present two constructions, each taking $poly(n)$ physical qubits, some of which are prepared in noisy magic states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A defining feature in the field of quantum computing is the potential of a
quantum device to outperform its classical counterpart for a specific
computational task. By now, several proposals exist showing that certain
sampling problems can be done efficiently quantumly, but are not possible
efficiently classically, assuming strongly held conjectures in complexity
theory. A feature dubbed quantum speedup. However, the effect of noise on these
proposals is not well understood in general, and in certain cases it is known
that simple noise can destroy the quantum speedup.
Here we develop a fault-tolerant version of one family of these sampling
problems, which we show can be implemented using quantum circuits of constant
depth. We present two constructions, each taking $poly(n)$ physical qubits,
some of which are prepared in noisy magic states. The first of our
constructions is a constant depth quantum circuit composed of single and
two-qubit nearest neighbour Clifford gates in four dimensions. This circuit has
one layer of interaction with a classical computer before final measurements.
Our second construction is a constant depth quantum circuit with single and
two-qubit nearest neighbour Clifford gates in three dimensions, but with two
layers of interaction with a classical computer before the final measurements.
For each of these constructions, we show that there is no classical algorithm
which can sample according to its output distribution in $poly(n)$ time,
assuming two standard complexity theoretic conjectures hold. The noise model we
assume is the so-called local stochastic quantum noise. Along the way, we
introduce various new concepts such as constant depth magic state distillation
(MSD), and constant depth output routing, which arise naturally in measurement
based quantum computation (MBQC), but have no constant-depth analogue in the
circuit model.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Instantaneous nonlocal quantum computation and circuit depth reduction [7.148511452018054]
Two-party quantum computation is a computation process with bipartite input and output, in which there are initial shared entanglement.
In the first part, we show that a particular simplified subprocedure, known as a garden-hose gadget, cannot significantly reduce the entanglement cost.
In the second part, we show that any unitary circuit consisting of layers of Clifford gates and T gates can be implemented using a circuit with measurements of depth proportional to the T-depth of the original circuit.
arXiv Detail & Related papers (2023-06-15T17:57:50Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
We show that noisy quantum devices with a circuit depth of more than $O(log n)$ provide no advantages in any quantum algorithms.
We also study the maximal entanglement that noisy quantum devices can produce under one- and two-dimensional qubit connections.
arXiv Detail & Related papers (2023-06-05T12:29:55Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Configurable sublinear circuits for quantum state preparation [1.9279780052245203]
We show a configuration that encodes an $N$-dimensional state by a quantum circuit with $O(sqrtN)$ width and depth and entangled information in ancillary qubits.
We show a proof-of-principle on five quantum computers and compare the results.
arXiv Detail & Related papers (2021-08-23T13:52:43Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.