A Joint Pixel and Feature Alignment Framework for Cross-dataset
Palmprint Recognition
- URL: http://arxiv.org/abs/2005.12044v1
- Date: Mon, 25 May 2020 11:40:51 GMT
- Title: A Joint Pixel and Feature Alignment Framework for Cross-dataset
Palmprint Recognition
- Authors: Huikai Shao and Dexing Zhong
- Abstract summary: We propose a novel Joint Pixel and Feature Alignment (JPFA) framework for cross-dataset palmprint recognition scenarios.
Two stage-alignment is applied to obtain adaptive features in source and target datasets.
Compared with baseline, the accuracy of cross-dataset identification is improved by up to 28.10% and the Equal Error Rate (EER) of cross-dataset verification is reduced by up to 4.69%.
- Score: 25.43285951112965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based palmprint recognition algorithms have shown great
potential. Most of them are mainly focused on identifying samples from the same
dataset. However, they may be not suitable for a more convenient case that the
images for training and test are from different datasets, such as collected by
embedded terminals and smartphones. Therefore, we propose a novel Joint Pixel
and Feature Alignment (JPFA) framework for such cross-dataset palmprint
recognition scenarios. Two stage-alignment is applied to obtain adaptive
features in source and target datasets. 1) Deep style transfer model is adopted
to convert source images into fake images to reduce the dataset gaps and
perform data augmentation on pixel level. 2) A new deep domain adaptation model
is proposed to extract adaptive features by aligning the dataset-specific
distributions of target-source and target-fake pairs on feature level. Adequate
experiments are conducted on several benchmarks including constrained and
unconstrained palmprint databases. The results demonstrate that our JPFA
outperforms other models to achieve the state-of-the-arts. Compared with
baseline, the accuracy of cross-dataset identification is improved by up to
28.10% and the Equal Error Rate (EER) of cross-dataset verification is reduced
by up to 4.69%. To make our results reproducible, the codes are publicly
available at http://gr.xjtu.edu.cn/web/bell/resource.
Related papers
- Rethinking Large-scale Dataset Compression: Shifting Focus From Labels to Images [60.42768987736088]
We introduce a benchmark that equitably evaluates methodologies across both distillation and pruning literatures.
Our benchmark reveals that in the mainstream dataset distillation setting for large-scale datasets, even randomly selected subsets can achieve surprisingly competitive performance.
We propose a new framework for dataset compression, termed Prune, Combine, and Augment (PCA), which focuses on leveraging image data exclusively.
arXiv Detail & Related papers (2025-02-10T13:11:40Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - Detecting Deepfakes with Self-Blended Images [37.374772758057844]
We present novel synthetic training data called self-blended images ( SBIs) to detect deepfakes.
SBIs are generated by blending pseudo source and target images from single pristine images.
We compare our approach with state-of-the-art methods on FF++, CDF, DFD, DFDC, DFDCP, and FFIW datasets.
arXiv Detail & Related papers (2022-04-18T15:44:35Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
The goal of this work is to efficiently identify visually similar patterns from a pair of images.
We generate synthetic training pairs by selecting object segments in an image and copy-pasting them into another image.
We show our approach provides clear improvements for artwork details retrieval on the Brueghel dataset.
arXiv Detail & Related papers (2021-10-29T16:51:16Z) - Free Lunch for Co-Saliency Detection: Context Adjustment [14.688461235328306]
We propose a "cost-free" group-cut-paste (GCP) procedure to leverage images from off-the-shelf saliency detection datasets and synthesize new samples.
We collect a novel dataset called Context Adjustment Training. The two variants of our dataset, i.e., CAT and CAT+, consist of 16,750 and 33,500 images, respectively.
arXiv Detail & Related papers (2021-08-04T14:51:37Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
We propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets.
This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets.
In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing.
arXiv Detail & Related papers (2021-06-08T06:13:11Z) - DAIL: Dataset-Aware and Invariant Learning for Face Recognition [67.4903809903022]
To achieve good performance in face recognition, a large scale training dataset is usually required.
It is problematic and troublesome to naively combine different datasets due to two major issues.
Naively treating the same person as different classes in different datasets during training will affect back-propagation.
manually cleaning labels may take formidable human efforts, especially when there are millions of images and thousands of identities.
arXiv Detail & Related papers (2021-01-14T01:59:52Z) - Learning to Recognize Patch-Wise Consistency for Deepfake Detection [39.186451993950044]
We propose a representation learning approach for this task, called patch-wise consistency learning (PCL)
PCL learns by measuring the consistency of image source features, resulting to representation with good interpretability and robustness to multiple forgery methods.
We evaluate our approach on seven popular Deepfake detection datasets.
arXiv Detail & Related papers (2020-12-16T23:06:56Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.