SCAN: Learning to Classify Images without Labels
- URL: http://arxiv.org/abs/2005.12320v2
- Date: Fri, 3 Jul 2020 15:25:54 GMT
- Title: SCAN: Learning to Classify Images without Labels
- Authors: Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc
Proesmans, Luc Van Gool
- Abstract summary: We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
- Score: 73.69513783788622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we automatically group images into semantically meaningful clusters when
ground-truth annotations are absent? The task of unsupervised image
classification remains an important, and open challenge in computer vision.
Several recent approaches have tried to tackle this problem in an end-to-end
fashion. In this paper, we deviate from recent works, and advocate a two-step
approach where feature learning and clustering are decoupled. First, a
self-supervised task from representation learning is employed to obtain
semantically meaningful features. Second, we use the obtained features as a
prior in a learnable clustering approach. In doing so, we remove the ability
for cluster learning to depend on low-level features, which is present in
current end-to-end learning approaches. Experimental evaluation shows that we
outperform state-of-the-art methods by large margins, in particular +26.6% on
CIFAR10, +25.0% on CIFAR100-20 and +21.3% on STL10 in terms of classification
accuracy. Furthermore, our method is the first to perform well on a large-scale
dataset for image classification. In particular, we obtain promising results on
ImageNet, and outperform several semi-supervised learning methods in the
low-data regime without the use of any ground-truth annotations. The code is
made publicly available at
https://github.com/wvangansbeke/Unsupervised-Classification.
Related papers
- Mixture of Self-Supervised Learning [2.191505742658975]
Self-supervised learning works by using a pretext task which will be trained on the model before being applied to a specific task.
Previous studies have only used one type of transformation as a pretext task.
This raises the question of how it affects if more than one pretext task is used and to use a gating network to combine all pretext tasks.
arXiv Detail & Related papers (2023-07-27T14:38:32Z) - Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models [37.574691902971296]
We propose a novel image clustering pipeline that leverages the powerful feature representation of large pre-trained models.
We show that our pipeline works well on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet-1k.
arXiv Detail & Related papers (2023-06-08T15:20:27Z) - Exploring the Limits of Deep Image Clustering using Pretrained Models [1.1060425537315088]
We present a methodology that learns to classify images without labels by leveraging pretrained feature extractors.
We propose a novel objective that learns associations between image features by introducing a variant of pointwise mutual information together with instance weighting.
arXiv Detail & Related papers (2023-03-31T08:56:29Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
We present MoBYv2AL, a novel self-supervised active learning framework for image classification.
Our contribution lies in lifting MoBY, one of the most successful self-supervised learning algorithms, to the AL pipeline.
We achieve state-of-the-art results when compared to recent AL methods.
arXiv Detail & Related papers (2023-01-04T10:52:02Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.
Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only 1% slower)
arXiv Detail & Related papers (2020-11-18T08:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.