Region-adaptive Texture Enhancement for Detailed Person Image Synthesis
- URL: http://arxiv.org/abs/2005.12486v1
- Date: Tue, 26 May 2020 02:33:21 GMT
- Title: Region-adaptive Texture Enhancement for Detailed Person Image Synthesis
- Authors: Lingbo Yang, Pan Wang, Xinfeng Zhang, Shanshe Wang, Zhanning Gao,
Peiran Ren, Xuansong Xie, Siwei Ma, Wen Gao
- Abstract summary: RATE-Net is a novel framework for synthesizing person images with sharp texture details.
The proposed framework leverages an additional texture enhancing module to extract appearance information from the source image.
Experiments conducted on DeepFashion benchmark dataset have demonstrated the superiority of our framework compared with existing networks.
- Score: 86.69934638569815
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The ability to produce convincing textural details is essential for the
fidelity of synthesized person images. However, existing methods typically
follow a ``warping-based'' strategy that propagates appearance features through
the same pathway used for pose transfer. However, most fine-grained features
would be lost due to down-sampling, leading to over-smoothed clothes and
missing details in the output images. In this paper we presents RATE-Net, a
novel framework for synthesizing person images with sharp texture details. The
proposed framework leverages an additional texture enhancing module to extract
appearance information from the source image and estimate a fine-grained
residual texture map, which helps to refine the coarse estimation from the pose
transfer module. In addition, we design an effective alternate updating
strategy to promote mutual guidance between two modules for better shape and
appearance consistency. Experiments conducted on DeepFashion benchmark dataset
have demonstrated the superiority of our framework compared with existing
networks.
Related papers
- ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images.
We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image.
The StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images.
arXiv Detail & Related papers (2024-01-13T04:54:59Z) - TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose
Estimation [55.94900327396771]
We introduce neural texture learning for 6D object pose estimation from synthetic data.
We learn to predict realistic texture of objects from real image collections.
We learn pose estimation from pixel-perfect synthetic data.
arXiv Detail & Related papers (2022-12-25T13:36:32Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Unsupervised Structure-Consistent Image-to-Image Translation [6.282068591820945]
The Swapping Autoencoder achieved state-of-the-art performance in deep image manipulation and image-to-image translation.
We improve this work by introducing a simple yet effective auxiliary module based on gradient reversal layers.
The auxiliary module's loss forces the generator to learn to reconstruct an image with an all-zero texture code.
arXiv Detail & Related papers (2022-08-24T13:47:15Z) - UMFA: A photorealistic style transfer method based on U-Net and
multi-layer feature aggregation [0.0]
We propose a photorealistic style transfer network to emphasize the natural effect of photorealistic image stylization.
In particular, an encoder based on the dense block and a decoder form a symmetrical structure of U-Net are jointly staked to realize an effective feature extraction and image reconstruction.
arXiv Detail & Related papers (2021-08-13T08:06:29Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z) - Co-occurrence Based Texture Synthesis [25.4878061402506]
We propose a fully convolutional generative adversarial network, conditioned locally on co-occurrence statistics, to generate arbitrarily large images.
We show that our solution offers a stable, intuitive and interpretable latent representation for texture synthesis.
arXiv Detail & Related papers (2020-05-17T08:01:44Z) - Towards Analysis-friendly Face Representation with Scalable Feature and
Texture Compression [113.30411004622508]
We show that a universal and collaborative visual information representation can be achieved in a hierarchical way.
Based on the strong generative capability of deep neural networks, the gap between the base feature layer and enhancement layer is further filled with the feature level texture reconstruction.
To improve the efficiency of the proposed framework, the base layer neural network is trained in a multi-task manner.
arXiv Detail & Related papers (2020-04-21T14:32:49Z) - SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On [14.198545992098309]
SieveNet is a framework for robust image-based virtual try-on.
We introduce a multi-stage coarse-to-fine warping network to better model fine-grained intricacies.
We also introduce a try-on cloth conditioned segmentation mask prior to improve the texture transfer network.
arXiv Detail & Related papers (2020-01-17T12:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.