CRUDE: Calibrating Regression Uncertainty Distributions Empirically
- URL: http://arxiv.org/abs/2005.12496v6
- Date: Mon, 15 Mar 2021 02:30:18 GMT
- Title: CRUDE: Calibrating Regression Uncertainty Distributions Empirically
- Authors: Eric Zelikman, Christopher Healy, Sharon Zhou, Anand Avati
- Abstract summary: Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting.
We present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE)
CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
- Score: 4.552831400384914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibrated uncertainty estimates in machine learning are crucial to many
fields such as autonomous vehicles, medicine, and weather and climate
forecasting. While there is extensive literature on uncertainty calibration for
classification, the classification findings do not always translate to
regression. As a result, modern models for predicting uncertainty in regression
settings typically produce uncalibrated and overconfident estimates. To address
these gaps, we present a calibration method for regression settings that does
not assume a particular uncertainty distribution over the error: Calibrating
Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the
weaker assumption that error distributions have a constant arbitrary shape
across the output space, shifted by predicted mean and scaled by predicted
standard deviation. We detail a theoretical connection between CRUDE and
conformal inference. Across an extensive set of regression tasks, CRUDE
demonstrates consistently sharper, better calibrated, and more accurate
uncertainty estimates than state-of-the-art techniques.
Related papers
- A Confidence Interval for the $\ell_2$ Expected Calibration Error [35.88784957918326]
We develop confidence intervals $ell$ Expected the Error (ECE)
We consider top-1-to-$k$ calibration, which includes both the popular notion of confidence calibration as well as calibration.
For a debiased estimator of the ECE, we show normality, but with different convergence rates and variances for calibrated and misd models.
arXiv Detail & Related papers (2024-08-16T20:00:08Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Recalibration of Aleatoric and Epistemic Regression Uncertainty in
Medical Imaging [2.126171264016785]
Well-calibrated uncertainty in regression allows robust rejection of unreliable predictions or detection of out-of-distribution samples.
$ sigma $ scaling is able to reliably recalibrate predictive uncertainty.
arXiv Detail & Related papers (2021-04-26T07:18:58Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate.
We propose an optimization method that leverages the relationship between accuracy and uncertainty as an anchor for uncertainty calibration.
We demonstrate our approach with mean-field variational inference and compare with state-of-the-art methods.
arXiv Detail & Related papers (2020-12-14T20:19:21Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z) - Calibration of Model Uncertainty for Dropout Variational Inference [1.8065361710947976]
In this paper, different logit scaling methods are extended to dropout variational inference to recalibrate model uncertainty.
Experimental results show that logit scaling considerably reduce miscalibration by means of UCE.
arXiv Detail & Related papers (2020-06-20T14:12:55Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z) - Calibrated Reliable Regression using Maximum Mean Discrepancy [45.45024203912822]
Modern deep neural networks still produce unreliable predictive uncertainty.
In this paper, we are concerned with getting well-calibrated predictions in regression tasks.
Experiments on non-trivial real datasets show that our method can produce well-calibrated and sharp prediction intervals.
arXiv Detail & Related papers (2020-06-18T03:38:12Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.