Learning with Weak Supervision for Email Intent Detection
- URL: http://arxiv.org/abs/2005.13084v1
- Date: Tue, 26 May 2020 23:41:05 GMT
- Title: Learning with Weak Supervision for Email Intent Detection
- Authors: Kai Shu, Subhabrata Mukherjee, Guoqing Zheng, Ahmed Hassan Awadallah,
Milad Shokouhi, Susan Dumais
- Abstract summary: We propose to leverage user actions as a source of weak supervision to detect intents in emails.
We develop an end-to-end robust deep neural network model for email intent identification.
- Score: 56.71599262462638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Email remains one of the most frequently used means of online communication.
People spend a significant amount of time every day on emails to exchange
information, manage tasks and schedule events. Previous work has studied
different ways for improving email productivity by prioritizing emails,
suggesting automatic replies or identifying intents to recommend appropriate
actions. The problem has been mostly posed as a supervised learning problem
where models of different complexities were proposed to classify an email
message into a predefined taxonomy of intents or classes. The need for labeled
data has always been one of the largest bottlenecks in training supervised
models. This is especially the case for many real-world tasks, such as email
intent classification, where large scale annotated examples are either hard to
acquire or unavailable due to privacy or data access constraints. Email users
often take actions in response to intents expressed in an email (e.g., setting
up a meeting in response to an email with a scheduling request). Such actions
can be inferred from user interaction logs. In this paper, we propose to
leverage user actions as a source of weak supervision, in addition to a limited
set of annotated examples, to detect intents in emails. We develop an
end-to-end robust deep neural network model for email intent identification
that leverages both clean annotated data and noisy weak supervision along with
a self-paced learning mechanism. Extensive experiments on three different
intent detection tasks show that our approach can effectively leverage the
weakly supervised data to improve intent detection in emails.
Related papers
- IntentGPT: Few-shot Intent Discovery with Large Language Models [9.245106106117317]
We develop a model capable of identifying new intents as they emerge.
IntentGPT is a training-free method that effectively prompts Large Language Models (LLMs) to discover new intents with minimal labeled data.
Our experiments show that IntentGPT outperforms previous methods that require extensive domain-specific data and fine-tuning.
arXiv Detail & Related papers (2024-11-16T02:16:59Z) - Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled
Datasets [73.2096288987301]
We propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset.
We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data.
Our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images.
arXiv Detail & Related papers (2023-04-18T05:42:53Z) - Profiler: Profile-Based Model to Detect Phishing Emails [15.109679047753355]
We propose a multidimensional risk assessment of emails to reduce the feasibility of an attacker adapting their email and avoiding detection.
We develop a risk assessment framework that includes three models which analyse an email's (1) threat level, (2) cognitive manipulation, and (3) email type.
Our Profiler can be used in conjunction with ML approaches, to reduce their misclassifications or as a labeller for large email data sets in the training stage.
arXiv Detail & Related papers (2022-08-18T10:01:55Z) - Email Summarization to Assist Users in Phishing Identification [1.433758865948252]
Cyber-phishing attacks are more precise, targeted, and tailored by training data to activate only in the presence of specific information or cues.
This work leverages transformer-based machine learning to analyze prospective psychological triggers.
We then amalgamate this information and present it to the user to allow them to (i) easily decide whether the email is "phishy" and (ii) self-learn advanced malicious patterns.
arXiv Detail & Related papers (2022-03-24T23:03:46Z) - EmailSum: Abstractive Email Thread Summarization [105.46012304024312]
We develop an abstractive Email Thread Summarization (EmailSum) dataset.
This dataset contains human-annotated short (30 words) and long (100 words) summaries of 2549 email threads.
Our results reveal the key challenges of current abstractive summarization models in this task.
arXiv Detail & Related papers (2021-07-30T15:13:14Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
We show that we can reuse prior data to extend new skills simply through dynamic programming.
We demonstrate the effectiveness of our approach by chaining together several behaviors seen in prior datasets for solving a new task.
We train our policies in an end-to-end fashion, mapping high-dimensional image observations to low-level robot control commands.
arXiv Detail & Related papers (2020-10-27T17:57:29Z) - Intent Mining from past conversations for conversational agent [1.9754522186574608]
Bots are increasingly being deployed to provide round-the-clock support and to increase customer engagement.
Many of the commercial bot building frameworks follow a standard approach that requires one to build and train an intent model to recognize a user input.
We have introduced a novel density-based clustering algorithm ITERDB-LabelSCAN for unbalanced data clustering.
arXiv Detail & Related papers (2020-05-22T05:29:13Z) - AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent
Detection and Slot Filling [69.59096090788125]
In this paper, we propose an Adaptive Graph-Interactive Framework (AGIF) for joint multiple intent detection and slot filling.
We introduce an intent-slot graph interaction layer to model the strong correlation between the slot and intents.
Such an interaction layer is applied to each token adaptively, which has the advantage to automatically extract the relevant intents information.
arXiv Detail & Related papers (2020-04-21T15:07:34Z) - Efficient Intent Detection with Dual Sentence Encoders [53.16532285820849]
We introduce intent detection methods backed by pretrained dual sentence encoders such as USE and ConveRT.
We demonstrate the usefulness and wide applicability of the proposed intent detectors, showing that they outperform intent detectors based on fine-tuning the full BERT-Large model.
We release our code, as well as a new challenging single-domain intent detection dataset.
arXiv Detail & Related papers (2020-03-10T15:33:54Z) - ScopeIt: Scoping Task Relevant Sentences in Documents [2.047424180164312]
We present a neural model for scoping relevant information for the agent from a large query.
We show that when used as a preprocessing step, the model improves performance of both intent detection and entity extraction tasks.
arXiv Detail & Related papers (2020-02-23T02:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.