Quantum Optical Coherence Tomography using two photon joint spectrum
detection (JS-Q-OCT)
- URL: http://arxiv.org/abs/2005.13147v1
- Date: Wed, 27 May 2020 04:02:10 GMT
- Title: Quantum Optical Coherence Tomography using two photon joint spectrum
detection (JS-Q-OCT)
- Authors: Sylwia M. Kolenderska, Frederique Vanholsbeeck, Piotr Kolenderski
- Abstract summary: Quantum Optical Coherence Tomography (Q- OCT) is a high-resolution 3D imaging technique based on white-light interferometry.
Here, we present a theoretical analysis of a novel approach that is free of image-scrambling artefacts and slow acquisition times.
We show that all the information about the internal structures of the object is encoded in the joint spectrum and can be easily retrieved through Fourier transformation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Optical Coherence Tomography (Q-OCT) is the non-classical counterpart
of Optical Coherence Tomography (OCT) - a high-resolution 3D imaging technique
based on white-light interferometry. Because Q-OCT uses a source of
frequency-entangled photon pairs, not only is the axial resolution not affected
by dispersion mismatch in the interferometer, but is also inherently improved
by a factor of square root of two. Unfortunately, practical applications of
Q-OCT are hindered by image-scrambling artefacts and slow acquisition times.
Here, we present a theoretical analysis of a novel approach that is free of
these problems: Q-OCT with joint spectrum detection (JS-Q-OCT). Based on a
photon pair coincidence detection as in the standard Q-OCT configuration, it
also discerns, each photon pair by their wavelength. We show that all the
information about the internal structures of the object is encoded in the joint
spectrum and can be easily retrieved through Fourier transformation. No depth
scanning is required, making our technique potentially faster than standard
Q-OCT. Finally, we show that the data available in the joint spectrum enables
artefact removal and discuss prospective algorithms for doing so.
Related papers
- Theoretical framework for real time sub-micron depth monitoring using
quantum inline coherent imaging [55.2480439325792]
Inline Coherent Imaging (ICI) is a reliable method for real-time monitoring of various laser processes, including keyhole welding, additive manufacturing, and micromachining.
The axial resolution is limited to greater than 2 mum making ICI unsuitable for monitoring submicron processes.
Advancements in Quantum Optical Coherence Tomography (Q OCT) has the potential to address this issue by achieving better than 1 mum depth resolution.
arXiv Detail & Related papers (2023-09-17T17:05:21Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum Wiener-Khinchin theorem for spectral-domain optical coherence
tomography [9.107095800991337]
We use a quantum Wiener-Khinchin theorem (QWKT) to state that two-photon joint spectral intensity and the cross-correlation of two-photon temporal signal can be connected.
The mathematically-defined QWKT is experimentally demonstrated in frequency-entangled two-photon Hong-Ou-Mandel interference with the assistance of spectrally-resolved detection.
arXiv Detail & Related papers (2022-05-23T13:38:25Z) - Resolution limit in quantum imaging with undetected photons using
position correlations [0.0]
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected.
Here we present a detailed study of the resolution limits of position correlation enabled QIUP.
arXiv Detail & Related papers (2021-06-21T18:40:46Z) - Artefact-removal algorithms for Fourier domain Quantum Optical Coherence
Tomography [0.0]
We propose two algorithms which process a Fd-Q- OCT's joint spectrum into an artefact-free A-scan.
We present the theoretical background of these algorithms and show their performance on computer-generated data.
arXiv Detail & Related papers (2021-03-29T04:55:17Z) - On using classical light in Quantum Optical Coherence Tomography [0.0]
Quantum Optical Coherence Tomography provides an increased axial resolution and is immune to even orders of dispersion.
In this work, we investigate the use of this spectral approach in which quantum interference is obtained with classical low-intensity light pulses.
arXiv Detail & Related papers (2021-03-27T18:58:59Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.