Biocompatible technique for nanoscale magnetic field sensing with
Nitrogen-Vacancy centers
- URL: http://arxiv.org/abs/2005.13230v2
- Date: Tue, 16 Jun 2020 10:35:52 GMT
- Title: Biocompatible technique for nanoscale magnetic field sensing with
Nitrogen-Vacancy centers
- Authors: Ettore Bernardi, Ekaterina Moreva, Paolo Traina, Giulia Petrini,
Sviatoslav Ditalia Tchernij, Jacopo Forneris, Zelijko Pastuovic, Ivo Pietro
Degiovanni, Paolo Olivero, M. Genovese
- Abstract summary: Nitrogen-vacancy centers in diamonds can be used to measure nanoscale magnetic fields.
The sensitivity at different optical powers is studied to extend this technique to the intercellular scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The possibility of using Nitrogen-vacancy centers in diamonds to measure
nanoscale magnetic fields with unprecedented sensitivity is one of the most
significant achievements of quantum sensing. Here we present an innovative
experimental set-up, showing an achieved sensitivity comparable to the state of
the art ODMR protocols if the sensing volume is taken into account. The
apparatus allows magnetic sensing in biological samples such as individual
cells, as it is characterized by a small sensing volume and full
bio-compatibility. The sensitivity at different optical powers is studied to
extend this technique to the intercellular scale.
Related papers
- All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Sub-nanotesla Sensitivity at the Nanoscale with a Single Spin [11.230326490436141]
We report that a sensitivity of 0.5 $bfnT/sqrtHz$ at the nanoscale is achieved experimentally by using nitrogen-vacancy defects in diamond.
The achieved sensitivity is substantially enhanced by integrating with multiple quantum techniques.
arXiv Detail & Related papers (2022-05-09T16:42:54Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Nanodiamonds based optical-fiber quantum probe for magnetic field and
biological sensing [6.643766442180283]
In this work, a miniature optical-fiber quantum probe, configured by chemically-modifying nanodiamonds NV centers, is developed.
The magnetic field detection sensitivity of the probe is significantly enhanced to 0.57 nT/Hz1/2 @ 1Hz, a new record among the fiber magnetometers based on nanodiamonds NV.
arXiv Detail & Related papers (2022-02-24T01:41:13Z) - AC sensing using nitrogen vacancy centers in a diamond anvil cell up to
6 GPa [0.22485007639406512]
Nitrogen-vacancy color centers in diamond have attracted broad attention as quantum sensors.
Optically-based nuclear magnetic resonance may be possible at pressures greater than a few GPa.
arXiv Detail & Related papers (2021-10-12T20:26:04Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Integrated and portable magnetometer based on nitrogen-vacancy ensembles
in diamond [0.0]
Negatively charged nitrogen-vacancy centers in diamond have emerged as a promising high sensitivity platform for measuring magnetic fields at room temperature.
Here, we demonstrate a fiber-based NV magnetometer featuring a complete integration of all functional components without using any bulky laboratory equipment.
arXiv Detail & Related papers (2020-12-02T09:49:23Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.