Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications
- URL: http://arxiv.org/abs/2005.14658v2
- Date: Mon, 4 Jan 2021 18:51:22 GMT
- Title: Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications
- Authors: Luisa Roa, Alejandro Correa-Bahnsen, Gabriel Suarez, Fernando
Cort\'es-Tejada, Mar\'ia A. Luque and Cristi\'an Bravo
- Abstract summary: We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
- Score: 110.54266632357673
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we present the impact of alternative data that originates from
an app-based marketplace, in contrast to traditional bureau data, upon credit
scoring models. These alternative data sources have shown themselves to be
immensely powerful in predicting borrower behavior in segments traditionally
underserved by banks and financial institutions. Our results, validated across
two countries, show that these new sources of data are particularly useful for
predicting financial behavior in low-wealth and young individuals, who are also
the most likely to engage with alternative lenders. Furthermore, using the
TreeSHAP method for Stochastic Gradient Boosting interpretation, our results
also revealed interesting non-linear trends in the variables originating from
the app, which would not normally be available to traditional banks. Our
results represent an opportunity for technology companies to disrupt
traditional banking by correctly identifying alternative data sources and
handling this new information properly. At the same time alternative data must
be carefully validated to overcome regulatory hurdles across diverse
jurisdictions.
Related papers
- Bayesian Regression for Predicting Subscription to Bank Term Deposits in Direct Marketing Campaigns [0.0]
The purpose of this research is to examine the efficacy of logit and probit models in predicting term deposit subscriptions.
The target variable was balanced, considering the inherent imbalance in the dataset.
The logit model performed better than the probit model in handling this classification problem.
arXiv Detail & Related papers (2024-10-28T21:04:58Z) - Credit Card Fraud Detection Using Advanced Transformer Model [15.34892016767672]
This study focuses on innovative applications of the latest Transformer models for more robust and precise fraud detection.
We meticulously processed the data sources, balancing the dataset to address the issue of data sparsity significantly.
We conducted performance comparisons with several widely adopted models, including Support Vector Machine (SVM), Random Forest, Neural Network, and Logistic Regression.
arXiv Detail & Related papers (2024-06-06T04:12:57Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Conservative Predictions on Noisy Financial Data [6.300716661852326]
Price movements in financial markets are well known to be very noisy.
Traditional rule-learning techniques would seek only high precision rules and refrain from making predictions where their antecedents did not apply.
We apply a similar approach, where a model abstains from making a prediction on data points that it is uncertain on.
arXiv Detail & Related papers (2023-10-18T09:14:19Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Enhancing User' s Income Estimation with Super-App Alternative Data [59.60094442546867]
It compares the performance of these alternative data sources with the performance of industry-accepted bureau income estimators.
Ultimately, this paper shows the incentive for financial institutions to seek to incorporate alternative data into constructing their risk profiles.
arXiv Detail & Related papers (2021-04-12T21:34:44Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
Super-Apps have changed the way we think about the interactions between users and commerce.
This paper investigates how different interactions between users within a Super-App provide a new source of information to predict borrower behavior.
arXiv Detail & Related papers (2021-02-19T15:13:06Z) - A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models [0.0]
This paper introduces a new method for credit scoring based on Gaussian Mixture Models.
Our algorithm classifies consumers into groups which are labeled as positive or negative.
We apply our model with real world databases from Australia, Japan, and Germany.
arXiv Detail & Related papers (2020-10-26T07:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.