SLAM-Inspired Simultaneous Contextualization and Interpreting for
Incremental Conversation Sentences
- URL: http://arxiv.org/abs/2005.14662v1
- Date: Fri, 29 May 2020 16:40:27 GMT
- Title: SLAM-Inspired Simultaneous Contextualization and Interpreting for
Incremental Conversation Sentences
- Authors: Yusuke Takimoto, Yosuke Fukuchi, Shoya Matsumori, Michita Imai
- Abstract summary: We propose a method to dynamically estimate the context and interpretations of polysemous words in sequential sentences.
By using the SCAIN algorithm, we can sequentially optimize the interdependence between context and word interpretation while obtaining new interpretations online.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed representation of words has improved the performance for many
natural language tasks. In many methods, however, only one meaning is
considered for one label of a word, and multiple meanings of polysemous words
depending on the context are rarely handled. Although research works have dealt
with polysemous words, they determine the meanings of such words according to a
batch of large documents. Hence, there are two problems with applying these
methods to sequential sentences, as in a conversation that contains ambiguous
expressions. The first problem is that the methods cannot sequentially deal
with the interdependence between context and word interpretation, in which
context is decided by word interpretations and the word interpretations are
decided by the context. Context estimation must thus be performed in parallel
to pursue multiple interpretations. The second problem is that the previous
methods use large-scale sets of sentences for offline learning of new
interpretations, and the steps of learning and inference are clearly separated.
Such methods using offline learning cannot obtain new interpretations during a
conversation. Hence, to dynamically estimate the conversation context and
interpretations of polysemous words in sequential sentences, we propose a
method of Simultaneous Contextualization And INterpreting (SCAIN) based on the
traditional Simultaneous Localization And Mapping (SLAM) algorithm. By using
the SCAIN algorithm, we can sequentially optimize the interdependence between
context and word interpretation while obtaining new interpretations online. For
experimental evaluation, we created two datasets: one from Wikipedia's
disambiguation pages and the other from real conversations. For both datasets,
the results confirmed that SCAIN could effectively achieve sequential
optimization of the interdependence and acquisition of new interpretations.
Related papers
- DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
We propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective.
By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form.
Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks.
arXiv Detail & Related papers (2024-01-24T17:48:45Z) - RankCSE: Unsupervised Sentence Representations Learning via Learning to
Rank [54.854714257687334]
We propose a novel approach, RankCSE, for unsupervised sentence representation learning.
It incorporates ranking consistency and ranking distillation with contrastive learning into a unified framework.
An extensive set of experiments are conducted on both semantic textual similarity (STS) and transfer (TR) tasks.
arXiv Detail & Related papers (2023-05-26T08:27:07Z) - SensePOLAR: Word sense aware interpretability for pre-trained contextual
word embeddings [4.479834103607384]
Adding interpretability to word embeddings represents an area of active research in text representation.
We present SensePOLAR, an extension of the original POLAR framework that enables word-sense aware interpretability for pre-trained contextual word embeddings.
arXiv Detail & Related papers (2023-01-11T20:25:53Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
We present Sentence Embedding (RSE), a new paradigm to discover further the potential of sentence embeddings.
RSE is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art embedding methods.
arXiv Detail & Related papers (2022-12-17T05:25:17Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
A text entails a hypothesis if and only if the true value of the hypothesis follows the text.
In this paper, we propose a novel approach to identifying the textual entailment relationship between text and hypothesis.
We employ an element-wise Manhattan distance vector-based feature that can identify the semantic entailment relationship between the text-hypothesis pair.
arXiv Detail & Related papers (2022-10-18T10:03:51Z) - Lost in Context? On the Sense-wise Variance of Contextualized Word
Embeddings [11.475144702935568]
We quantify how much the contextualized embeddings of each word sense vary across contexts in typical pre-trained models.
We find that word representations are position-biased, where the first words in different contexts tend to be more similar.
arXiv Detail & Related papers (2022-08-20T12:27:25Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Studying word order through iterative shuffling [14.530986799844873]
We show that word order encodes meaning essential to performing NLP benchmark tasks.
We use IBIS, a novel, efficient procedure that finds the ordering of a bag of words having the highest likelihood under a fixed language model.
We discuss how shuffling inference procedures such as IBIS can benefit language modeling and constrained generation.
arXiv Detail & Related papers (2021-09-10T13:27:06Z) - Perturbing Inputs for Fragile Interpretations in Deep Natural Language
Processing [18.91129968022831]
Interpretability methods need to be robust for trustworthy NLP applications in high-stake areas like medicine or finance.
Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text.
arXiv Detail & Related papers (2021-08-11T02:07:21Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
This paper proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance.
We build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images.
Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
arXiv Detail & Related papers (2020-12-30T09:11:50Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.