Statistical Guarantees for Regularized Neural Networks
- URL: http://arxiv.org/abs/2006.00294v2
- Date: Wed, 11 Nov 2020 09:18:34 GMT
- Title: Statistical Guarantees for Regularized Neural Networks
- Authors: Mahsa Taheri and Fang Xie and Johannes Lederer
- Abstract summary: We develop a general statistical guarantee for estimators that consist of a least-squares term and a regularizer.
Our results establish a mathematical basis for regularized estimation of neural networks.
- Score: 4.254099382808598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have become standard tools in the analysis of data, but they
lack comprehensive mathematical theories. For example, there are very few
statistical guarantees for learning neural networks from data, especially for
classes of estimators that are used in practice or at least similar to such. In
this paper, we develop a general statistical guarantee for estimators that
consist of a least-squares term and a regularizer. We then exemplify this
guarantee with $\ell_1$-regularization, showing that the corresponding
prediction error increases at most sub-linearly in the number of layers and at
most logarithmically in the total number of parameters. Our results establish a
mathematical basis for regularized estimation of neural networks, and they
deepen our mathematical understanding of neural networks and deep learning more
generally.
Related papers
- Trade-Offs of Diagonal Fisher Information Matrix Estimators [53.35448232352667]
The Fisher information matrix can be used to characterize the local geometry of the parameter space of neural networks.
We examine two popular estimators whose accuracy and sample complexity depend on their associated variances.
We derive bounds of the variances and instantiate them in neural networks for regression and classification.
arXiv Detail & Related papers (2024-02-08T03:29:10Z) - Fundamental limits of overparametrized shallow neural networks for
supervised learning [11.136777922498355]
We study a two-layer neural network trained from input-output pairs generated by a teacher network with matching architecture.
Our results come in the form of bounds relating i) the mutual information between training data and network weights, or ii) the Bayes-optimal generalization error.
arXiv Detail & Related papers (2023-07-11T08:30:50Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Statistical Guarantees for Approximate Stationary Points of Simple
Neural Networks [4.254099382808598]
We develop statistical guarantees for simple neural networks that coincide up to logarithmic factors with the global optima.
We make a step forward in describing the practical properties of neural networks in mathematical terms.
arXiv Detail & Related papers (2022-05-09T18:09:04Z) - How does unlabeled data improve generalization in self-training? A
one-hidden-layer theoretical analysis [93.37576644429578]
This work establishes the first theoretical analysis for the known iterative self-training paradigm.
We prove the benefits of unlabeled data in both training convergence and generalization ability.
Experiments from shallow neural networks to deep neural networks are also provided to justify the correctness of our established theoretical insights on self-training.
arXiv Detail & Related papers (2022-01-21T02:16:52Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
Self-training algorithms have been very successful for learning with unlabeled data using neural networks.
This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning.
arXiv Detail & Related papers (2020-10-07T19:43:55Z) - Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
Regression and Infinitely Wide Neural Networks [17.188280334580195]
Generalization beyond a training dataset is a main goal of machine learning.
Recent observations in deep neural networks contradict conventional wisdom from classical statistics.
We show that more data may impair generalization when noisy or not expressible by the kernel.
arXiv Detail & Related papers (2020-06-23T17:53:11Z) - Bayesian Neural Networks [0.0]
We show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors.
We will also describe how both of these methods have substantial pitfalls when put into practice.
arXiv Detail & Related papers (2020-06-02T09:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.