Hyperparameter optimization with REINFORCE and Transformers
- URL: http://arxiv.org/abs/2006.00939v4
- Date: Thu, 5 Nov 2020 04:55:03 GMT
- Title: Hyperparameter optimization with REINFORCE and Transformers
- Authors: Chepuri Shri Krishna, Ashish Gupta, Swarnim Narayan, Himanshu Rai, and
Diksha Manchanda
- Abstract summary: Reinforcement Learning has yielded promising results for Neural Architecture Search (NAS)
We demonstrate how its performance can be improved by using a simplified Transformer block to model the policy network.
- Score: 2.1404235519012076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning has yielded promising results for Neural Architecture
Search (NAS). In this paper, we demonstrate how its performance can be improved
by using a simplified Transformer block to model the policy network. The
simplified Transformer uses a 2-stream attention-based mechanism to model
hyper-parameter dependencies while avoiding layer normalization and position
encoding. We posit that this parsimonious design balances model complexity
against expressiveness, making it suitable for discovering optimal
architectures in high-dimensional search spaces with limited exploration
budgets. We demonstrate how the algorithm's performance can be further improved
by a) using an actor-critic style algorithm instead of plain vanilla policy
gradient and b) ensembling Transformer blocks with shared parameters, each
block conditioned on a different auto-regressive factorization order. Our
algorithm works well as both a NAS and generic hyper-parameter optimization
(HPO) algorithm: it outperformed most algorithms on NAS-Bench-101, a public
data-set for benchmarking NAS algorithms. In particular, it outperformed RL
based methods that use alternate architectures to model the policy network,
underlining the value of using attention-based networks in this setting. As a
generic HPO algorithm, it outperformed Random Search in discovering more
accurate multi-layer perceptron model architectures across 2 regression tasks.
We have adhered to guidelines listed in Lindauer and Hutter while designing
experiments and reporting results.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
We propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures.
We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS.
Experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks.
arXiv Detail & Related papers (2021-07-15T16:46:01Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
This paper proposes a trilevel neural architecture search (NAS) method for efficient single image super-resolution (SR)
For modeling the discrete search space, we apply a new continuous relaxation on the discrete search spaces to build a hierarchical mixture of network-path, cell-operations, and kernel-width.
An efficient search algorithm is proposed to perform optimization in a hierarchical supernet manner.
arXiv Detail & Related papers (2021-01-17T12:19:49Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.