A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss
- URL: http://arxiv.org/abs/2006.01592v2
- Date: Tue, 2 Feb 2021 08:56:42 GMT
- Title: A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss
- Authors: Hou Pong Chan, Wang Chen, Irwin King
- Abstract summary: Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms.
We propose a novel dual-view model that jointly improves the performance of these two tasks.
Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
- Score: 51.448615489097236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acquiring accurate summarization and sentiment from user reviews is an
essential component of modern e-commerce platforms. Review summarization aims
at generating a concise summary that describes the key opinions and sentiment
of a review, while sentiment classification aims to predict a sentiment label
indicating the sentiment attitude of a review. To effectively leverage the
shared sentiment information in both review summarization and sentiment
classification tasks, we propose a novel dual-view model that jointly improves
the performance of these two tasks. In our model, an encoder first learns a
context representation for the review, then a summary decoder generates a
review summary word by word. After that, a source-view sentiment classifier
uses the encoded context representation to predict a sentiment label for the
review, while a summary-view sentiment classifier uses the decoder hidden
states to predict a sentiment label for the generated summary. During training,
we introduce an inconsistency loss to penalize the disagreement between these
two classifiers. It helps the decoder to generate a summary to have a
consistent sentiment tendency with the review and also helps the two sentiment
classifiers learn from each other. Experiment results on four real-world
datasets from different domains demonstrate the effectiveness of our model.
Related papers
- Annotator in the Loop: A Case Study of In-Depth Rater Engagement to Create a Bridging Benchmark Dataset [1.825224193230824]
We describe a novel, collaborative, and iterative annotator-in-the-loop methodology for annotation.
Our findings indicate that collaborative engagement with annotators can enhance annotation methods.
arXiv Detail & Related papers (2024-08-01T19:11:08Z) - Attributable and Scalable Opinion Summarization [79.87892048285819]
We generate abstractive summaries by decoding frequent encodings, and extractive summaries by selecting the sentences assigned to the same frequent encodings.
Our method is attributable, because the model identifies sentences used to generate the summary as part of the summarization process.
It scales easily to many hundreds of input reviews, because aggregation is performed in the latent space rather than over long sequences of tokens.
arXiv Detail & Related papers (2023-05-19T11:30:37Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
Review summarization is a non-trivial task that aims to summarize the main idea of the product review in the E-commerce website.
We propose the Heterogeneous Historical Review aware Review Summarization Model (HHRRS)
We employ a multi-task framework that conducts the review sentiment classification and summarization jointly.
arXiv Detail & Related papers (2023-01-27T12:32:55Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
We propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation.
Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three)
We are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers.
arXiv Detail & Related papers (2020-11-02T08:07:50Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Topic Detection and Summarization of User Reviews [6.779855791259679]
We propose an effective new summarization method by analyzing both reviews and summaries.
A new dataset comprising product reviews and summaries about 1028 products are collected from Amazon and CNET.
arXiv Detail & Related papers (2020-05-30T02:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.