Transport controlled by Poincar\'e orbit topology in a driven
inhomogeneous lattice gas
- URL: http://arxiv.org/abs/2006.01612v1
- Date: Tue, 2 Jun 2020 13:57:12 GMT
- Title: Transport controlled by Poincar\'e orbit topology in a driven
inhomogeneous lattice gas
- Authors: Alec Cao, Roshan Sajjad, Ethan Q. Simmons, Cora J. Fujiwara, Toshihiko
Shimasaki, David M. Weld
- Abstract summary: In periodic quantum systems, the interplay between drive and Bloch oscillations controls transport dynamics.
We show that inhomogeneity of the applied force leads to a rich new variety of dynamical behaviors controlled by the drive phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In periodic quantum systems which are both homogeneously tilted and driven,
the interplay between drive and Bloch oscillations controls transport dynamics.
Using a quantum gas in a modulated optical lattice, we show experimentally that
inhomogeneity of the applied force leads to a rich new variety of dynamical
behaviors controlled by the drive phase, from self-parametrically-modulated
Bloch epicycles to adaptive driving of transport against a force gradient to
modulation-enhanced monopole modes. Matching experimental observations to
fit-parameter-free numerical predictions of time-dependent band theory, we show
that these phenomena can be quantitatively understood as manifestations of an
underlying inhomogeneity-induced phase space structure, in which topological
classification of stroboscopic Poincar\'e orbits controls the transport
dynamics.
Related papers
- On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Optomechanical realization of the bosonic Kitaev-Majorana chain [0.0]
We report the experimental realization of its bosonic analogue in a nano-optomechanical network.
We observe several extraordinary phenomena in the bosonic dynamics and transport.
We present an experimental demonstration of an exponentially enhanced response to a small perturbation as a consequence of non-Hermitian topology.
arXiv Detail & Related papers (2023-09-11T21:10:22Z) - Observation of subdiffusive dynamic scaling in a driven and disordered
Bose gas [0.0]
We study the dynamics of a tuneable box-trapped Bose gas under strong periodic forcing.
In absence of interparticle interactions, the interplay of the drive and disorder results in an isotropic nonthermal momentum distribution.
arXiv Detail & Related papers (2023-04-13T17:50:22Z) - Dynamics and transport in the boundary-driven dissipative Klein-Gordon
chain [0.0]
We consider the dynamics of a classical Klein-Gordon chain coupled to coherent driving and subject to dissipation solely at its boundaries.
We propose a non-local Lyapunov exponent as an experimentally measurable diagnostic of many-body chaos in this system.
arXiv Detail & Related papers (2022-09-08T18:00:10Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Engineered dissipation induced entanglement transition in quantum spin
chains: from logarithmic growth to area law [0.0]
Recent theoretical work has shown that the competition between coherent unitary dynamics and measurements can give rise to transitions in the entanglement scaling.
We consider an engineered dissipation, which stabilizes an entangled phase of a quantum spin$-1/2$ chain.
We find that the system undergoes an entanglement transition from a logarithmic growth to an area law when the competition ratio between the unitary evolution and the non-unitary dynamics increases.
arXiv Detail & Related papers (2021-06-18T12:41:01Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.