Semi-supervised and Unsupervised Methods for Heart Sounds Classification
in Restricted Data Environments
- URL: http://arxiv.org/abs/2006.02610v1
- Date: Thu, 4 Jun 2020 02:07:35 GMT
- Title: Semi-supervised and Unsupervised Methods for Heart Sounds Classification
in Restricted Data Environments
- Authors: Balagopal Unnikrishnan, Pranshu Ranjan Singh, Xulei Yang, and Matthew
Chin Heng Chua
- Abstract summary: This study uses various supervised, semi-supervised and unsupervised approaches on the PhysioNet/CinC 2016 Challenge dataset.
A GAN based semi-supervised method is proposed, which allows the usage of unlabelled data samples to boost the learning of data distribution.
In particular, the unsupervised feature extraction using 1D CNN Autoencoder coupled with one-class SVM obtains good performance without any data labelling.
- Score: 4.712158833534046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated heart sounds classification is a much-required diagnostic tool in
the view of increasing incidences of heart related diseases worldwide. In this
study, we conduct a comprehensive study of heart sounds classification by using
various supervised, semi-supervised and unsupervised approaches on the
PhysioNet/CinC 2016 Challenge dataset. Supervised approaches, including deep
learning and machine learning methods, require large amounts of labelled data
to train the models, which are challenging to obtain in most practical
scenarios. In view of the need to reduce the labelling burden for clinical
practices, where human labelling is both expensive and time-consuming,
semi-supervised or even unsupervised approaches in restricted data setting are
desirable. A GAN based semi-supervised method is therefore proposed, which
allows the usage of unlabelled data samples to boost the learning of data
distribution. It achieves a better performance in terms of AUROC over the
supervised baseline when limited data samples exist. Furthermore, several
unsupervised methods are explored as an alternative approach by considering the
given problem as an anomaly detection scenario. In particular, the unsupervised
feature extraction using 1D CNN Autoencoder coupled with one-class SVM obtains
good performance without any data labelling. The potential of the proposed
semi-supervised and unsupervised methods may lead to a workflow tool in the
future for the creation of higher quality datasets.
Related papers
- Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
Anomalies are samples that significantly deviate from the rest of the data and their detection plays a major role in building machine learning models.
We introduce a robust, efficient, and interpretable methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings.
arXiv Detail & Related papers (2023-06-15T18:48:10Z) - Semi-supervised binary classification with latent distance learning [0.0]
We propose a new learning representation to solve the binary classification problem using a few labels with a random k-pair cross-distance learning mechanism.
With few labels and without any data augmentation techniques, the proposed method outperformed state-of-the-art semi-supervised and self-supervised learning methods.
arXiv Detail & Related papers (2022-11-28T09:05:26Z) - Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer
Data [4.843654097048771]
Self-Supervised Learning (SSL) methods are typically used to deal with limited labelled data.
We develop a novel pre-training paradigm that consists of various SSL components.
Our approach outperforms the state-of-the-art method in cancer type classification on the TCGA pan-cancer dataset.
arXiv Detail & Related papers (2022-10-03T11:20:12Z) - A semi-supervised Teacher-Student framework for surgical tool detection
and localization [2.41710192205034]
We introduce a semi-supervised learning (SSL) framework in surgical tool detection paradigm.
In the proposed work, we train a model with labeled data which initialises the Teacher-Student joint learning.
Our results on m2cai16-tool-locations dataset indicate the superiority of our approach on different supervised data settings.
arXiv Detail & Related papers (2022-08-21T17:21:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - A multi-stage semi-supervised improved deep embedded clustering
(MS-SSIDEC) method for bearing fault diagnosis under the situation of
insufficient labeled samples [20.952315351460527]
It costs a lot of labor and time to label data in actual industrial processes, which challenges the application of intelligent fault diagnosis methods.
To solve this problem, a multi-stage semi-supervised improved deep embedded clustering (MS-SSIDEC) method is proposed.
This method includes three stages: pre-training, deep clustering and enhanced supervised learning.
arXiv Detail & Related papers (2021-09-28T06:49:40Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.