Sparse Gaussian Processes via Parametric Families of Compactly-supported
Kernels
- URL: http://arxiv.org/abs/2006.03673v1
- Date: Fri, 5 Jun 2020 20:44:09 GMT
- Title: Sparse Gaussian Processes via Parametric Families of Compactly-supported
Kernels
- Authors: Jarred Barber
- Abstract summary: We propose a method for deriving parametric families of kernel functions with compact support.
The parameters of this family of kernels can be learned from data using maximum likelihood estimation.
We show that these approximations incur minimal error over the exact models when modeling data drawn directly from a target GP.
- Score: 0.6091702876917279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes are powerful models for probabilistic machine learning,
but are limited in application by their $O(N^3)$ inference complexity. We
propose a method for deriving parametric families of kernel functions with
compact spatial support, which yield naturally sparse kernel matrices and
enable fast Gaussian process inference via sparse linear algebra. These
families generalize known compactly-supported kernel functions, such as the
Wendland polynomials. The parameters of this family of kernels can be learned
from data using maximum likelihood estimation. Alternatively, we can quickly
compute compact approximations of a target kernel using convex optimization. We
demonstrate that these approximations incur minimal error over the exact models
when modeling data drawn directly from a target GP, and can out-perform the
traditional GP kernels on real-world signal reconstruction tasks, while
exhibiting sub-quadratic inference complexity.
Related papers
- Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data [2.8377382540923004]
We derive an alternative kernel that can discover and encode both sparsity and nonstationarity.
We demonstrate the favorable performance of our novel kernel relative to existing exact and approximate GP methods.
We also conduct space-time prediction based on more than one million measurements of daily maximum temperature.
arXiv Detail & Related papers (2024-11-07T20:07:21Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
In large data applications, computational costs can be reduced using low-rank or sparse approximations of the kernel.
This paper investigates the effect of such kernel approximations on the element error.
arXiv Detail & Related papers (2023-12-14T18:53:32Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
We focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations.
We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly.
arXiv Detail & Related papers (2022-04-12T09:52:36Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
We present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior.
Our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.
arXiv Detail & Related papers (2020-12-21T13:41:15Z) - Mat\'ern Gaussian processes on Riemannian manifolds [81.15349473870816]
We show how to generalize the widely-used Mat'ern class of Gaussian processes.
We also extend the generalization from the Mat'ern to the widely-used squared exponential process.
arXiv Detail & Related papers (2020-06-17T21:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.