Siamese Keypoint Prediction Network for Visual Object Tracking
- URL: http://arxiv.org/abs/2006.04078v1
- Date: Sun, 7 Jun 2020 08:11:06 GMT
- Title: Siamese Keypoint Prediction Network for Visual Object Tracking
- Authors: Qiang Li, Zekui Qin, Wenbo Zhang, and Wen Zheng
- Abstract summary: We propose the Siamese keypoint prediction network (SiamKPN) to address these challenges.
SiamKPN benefits from a cascade heatmap strategy for coarse-to-fine prediction modeling.
It performs well against state-of-the-art trackers for visual object tracking on four benchmark datasets.
- Score: 11.25492557077732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual object tracking aims to estimate the location of an arbitrary target
in a video sequence given its initial bounding box. By utilizing offline
feature learning, the siamese paradigm has recently been the leading framework
for high performance tracking. However, current existing siamese trackers
either heavily rely on complicated anchor-based detection networks or lack the
ability to resist to distractors. In this paper, we propose the Siamese
keypoint prediction network (SiamKPN) to address these challenges. Upon a
Siamese backbone for feature embedding, SiamKPN benefits from a cascade heatmap
strategy for coarse-to-fine prediction modeling. In particular, the strategy is
implemented by sequentially shrinking the coverage of the label heatmap along
the cascade to apply loose-to-strict intermediate supervisions. During
inference, we find the predicted heatmaps of successive stages to be gradually
concentrated to the target and reduced to the distractors. SiamKPN performs
well against state-of-the-art trackers for visual object tracking on four
benchmark datasets including OTB-100, VOT2018, LaSOT and GOT-10k, while running
at real-time speed.
Related papers
- ET-Former: Efficient Triplane Deformable Attention for 3D Semantic Scene Completion From Monocular Camera [53.20087549782785]
We introduce ET-Former, a novel end-to-end algorithm for semantic scene completion using a single monocular camera.
Our approach generates a semantic occupancy map from single RGB observation while simultaneously providing uncertainty estimates for semantic predictions.
arXiv Detail & Related papers (2024-10-14T19:14:49Z) - Multi-Object Tracking and Segmentation with a Space-Time Memory Network [12.043574473965318]
We propose a method for multi-object tracking and segmentation based on a novel memory-based mechanism to associate tracklets.
The proposed tracker, MeNToS, addresses particularly the long-term data association problem.
arXiv Detail & Related papers (2021-10-21T17:13:17Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for
Visual Object Tracking [70.14487738649373]
Adrial attack arises due to the vulnerability of deep neural networks to perceive input samples injected with imperceptible perturbations.
We propose a decision-based black-box attack method for visual object tracking.
We validate the proposed IoU attack on state-of-the-art deep trackers.
arXiv Detail & Related papers (2021-03-27T16:20:32Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
In this work, we adopt the pre-trained Mask R-CNN deep object detector as the baseline.
We introduce a novel inference architecture placed on top of FPN-ResNet101 backbone of Mask R-CNN to jointly perform detection and tracking.
The proposed single object tracker, TDIOT, applies an appearance similarity-based temporal matching for data association.
arXiv Detail & Related papers (2021-03-19T20:45:06Z) - Temporally-Transferable Perturbations: Efficient, One-Shot Adversarial
Attacks for Online Visual Object Trackers [81.90113217334424]
We propose a framework to generate a single temporally transferable adversarial perturbation from the object template image only.
This perturbation can then be added to every search image, which comes at virtually no cost, and still, successfully fool the tracker.
arXiv Detail & Related papers (2020-12-30T15:05:53Z) - Towards Accurate Pixel-wise Object Tracking by Attention Retrieval [50.06436600343181]
We propose an attention retrieval network (ARN) to perform soft spatial constraints on backbone features.
We set a new state-of-the-art on recent pixel-wise object tracking benchmark VOT 2020 while running at 40 fps.
arXiv Detail & Related papers (2020-08-06T16:25:23Z) - Self-supervised Object Tracking with Cycle-consistent Siamese Networks [55.040249900677225]
We exploit an end-to-end Siamese network in a cycle-consistent self-supervised framework for object tracking.
We propose to integrate a Siamese region proposal and mask regression network in our tracking framework so that a fast and more accurate tracker can be learned without the annotation of each frame.
arXiv Detail & Related papers (2020-08-03T04:10:38Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
A cooling-shrinking attack method is proposed to deceive state-of-the-art SiameseRPN-based trackers.
Our method has good transferability and is able to deceive other top-performance trackers such as DaSiamRPN, DaSiamRPN-UpdateNet, and DiMP.
arXiv Detail & Related papers (2020-03-21T07:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.