Adversarial Optimal Transport Through The Convolution Of Kernels With
Evolving Measures
- URL: http://arxiv.org/abs/2006.04245v2
- Date: Tue, 9 Jun 2020 03:32:00 GMT
- Title: Adversarial Optimal Transport Through The Convolution Of Kernels With
Evolving Measures
- Authors: Daeyoung Kim, Esteban G. Tabak
- Abstract summary: A novel algorithm is proposed to solve the sample-based optimal transport problem.
The representation of the test function as the Monte Carlo simulation of a distribution makes the algorithm robust to dimensionality.
- Score: 3.1735221946062313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel algorithm is proposed to solve the sample-based optimal transport
problem. An adversarial formulation of the push-forward condition uses a test
function built as a convolution between an adaptive kernel and an evolving
probability distribution $\nu$ over a latent variable $b$. Approximating this
convolution by its simulation over evolving samples $b^i(t)$ of $\nu$, the
parameterization of the test function reduces to determining the flow of these
samples. This flow, discretized over discrete time steps $t_n$, is built from
the composition of elementary maps. The optimal transport also follows a flow
that, by duality, must follow the gradient of the test function. The
representation of the test function as the Monte Carlo simulation of a
distribution makes the algorithm robust to dimensionality, and its evolution
under a memory-less flow produces rich, complex maps from simple parametric
transformations. The algorithm is illustrated with numerical examples.
Related papers
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Harmonic Path Integral Diffusion [0.4527270266697462]
We present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples.
Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, transforming it into the target distribution at $t=1$.
We contrast these algorithms with other sampling methods, particularly simulated and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency.
arXiv Detail & Related papers (2024-09-23T16:20:21Z) - Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation [8.67581853745823]
Current deep learning-based method solves the stationary Fokker--Planck equation to determine the invariant probability density function in form of deep neural networks.
We introduce a framework that employs a weak generative sampler (WGS) to directly generate independent and identically distributed (iid) samples.
Our proposed loss function is based on the weak form of the Fokker--Planck equation, integrating normalizing flows to characterize the invariant distribution.
arXiv Detail & Related papers (2024-05-29T16:41:42Z) - Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs [49.1574468325115]
We consider the problem of recovering the $Wimat$-optimal transport map T between absolutely continuous measures $mu,nuinmathcalP(mathbbRn)$ as the flow of a linear-control neural ODE.
arXiv Detail & Related papers (2023-11-02T17:17:03Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.