Semantics-Driven Unsupervised Learning for Monocular Depth and
Ego-Motion Estimation
- URL: http://arxiv.org/abs/2006.04371v1
- Date: Mon, 8 Jun 2020 05:55:07 GMT
- Title: Semantics-Driven Unsupervised Learning for Monocular Depth and
Ego-Motion Estimation
- Authors: Xiaobin Wei, Jianjiang Feng, Jie Zhou
- Abstract summary: We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos.
Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervision signal for training.
- Score: 33.83396613039467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a semantics-driven unsupervised learning approach for monocular
depth and ego-motion estimation from videos in this paper. Recent unsupervised
learning methods employ photometric errors between synthetic view and actual
image as a supervision signal for training. In our method, we exploit semantic
segmentation information to mitigate the effects of dynamic objects and
occlusions in the scene, and to improve depth prediction performance by
considering the correlation between depth and semantics. To avoid costly
labeling process, we use noisy semantic segmentation results obtained by a
pre-trained semantic segmentation network. In addition, we minimize the
position error between the corresponding points of adjacent frames to utilize
3D spatial information. Experimental results on the KITTI dataset show that our
method achieves good performance in both depth and ego-motion estimation tasks.
Related papers
- RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
We propose an image-guidance network (IGNet) which builds upon the idea of distilling high level feature information from a domain adapted synthetically trained 2D semantic segmentation network.
IGNet achieves state-of-the-art results for weakly-supervised LiDAR semantic segmentation on ScribbleKITTI, boasting up to 98% relative performance to fully supervised training with only 8% labeled points.
arXiv Detail & Related papers (2023-11-27T07:57:29Z) - SemHint-MD: Learning from Noisy Semantic Labels for Self-Supervised
Monocular Depth Estimation [19.229255297016635]
Self-supervised depth estimation can be trapped in a local minimum due to the gradient-locality issue of the photometric loss.
We present a framework to enhance depth by leveraging semantic segmentation to guide the network to jump out of the local minimum.
arXiv Detail & Related papers (2023-03-31T17:20:27Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - USegScene: Unsupervised Learning of Depth, Optical Flow and Ego-Motion
with Semantic Guidance and Coupled Networks [31.600708674008384]
USegScene is a framework for semantically guided unsupervised learning of depth, optical flow and ego-motion estimation for stereo camera images.
We present results on the popular KITTI dataset and show that our approach outperforms other methods by a large margin.
arXiv Detail & Related papers (2022-07-15T13:25:47Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
We propose a novel method to improve the self-supervised training of monocular depth via cross-task knowledge distillation.
During training, we utilize a pretrained semantic segmentation teacher network and transfer its semantic knowledge to the depth network.
We extensively evaluate the efficacy of our proposed approach on the KITTI benchmark and compare it with the latest state of the art.
arXiv Detail & Related papers (2021-10-24T19:47:14Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
We present a framework for semi-supervised semantic segmentation, which is enhanced by self-supervised monocular depth estimation from unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset, where all three modules demonstrate significant performance gains.
arXiv Detail & Related papers (2020-12-19T21:18:03Z) - Semantically-Guided Representation Learning for Self-Supervised
Monocular Depth [40.49380547487908]
We propose a new architecture leveraging fixed pretrained semantic segmentation networks to guide self-supervised representation learning.
Our method improves upon the state of the art for self-supervised monocular depth prediction over all pixels, fine-grained details, and per semantic categories.
arXiv Detail & Related papers (2020-02-27T18:40:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.