Black-box Mixed-Variable Optimisation using a Surrogate Model that
Satisfies Integer Constraints
- URL: http://arxiv.org/abs/2006.04508v2
- Date: Tue, 15 Sep 2020 09:58:45 GMT
- Title: Black-box Mixed-Variable Optimisation using a Surrogate Model that
Satisfies Integer Constraints
- Authors: Laurens Bliek, Arthur Guijt, Sicco Verwer, Mathijs de Weerdt
- Abstract summary: Mixed-Variable ReLU-based Surrogate Modelling (MVRSM) is a surrogate-based algorithm that uses a linear combination of rectified linear units.
This method outperforms the state of the art on several synthetic benchmarks with up to 238 continuous and integer variables.
- Score: 9.655888042539495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A challenging problem in both engineering and computer science is that of
minimising a function for which we have no mathematical formulation available,
that is expensive to evaluate, and that contains continuous and integer
variables, for example in automatic algorithm configuration. Surrogate-based
algorithms are very suitable for this type of problem, but most existing
techniques are designed with only continuous or only discrete variables in
mind. Mixed-Variable ReLU-based Surrogate Modelling (MVRSM) is a
surrogate-based algorithm that uses a linear combination of rectified linear
units, defined in such a way that (local) optima satisfy the integer
constraints. This method outperforms the state of the art on several synthetic
benchmarks with up to 238 continuous and integer variables, and achieves
competitive performance on two real-life benchmarks: XGBoost hyperparameter
tuning and Electrostatic Precipitator optimisation.
Related papers
- Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
Topology optimization (TO) provides a principled mathematical approach for optimizing the performance of a structure by designing its material spatial distribution in a pre-defined domain and subject to a set of constraints.
We develop a new class of TO methods based on the framework of Gaussian processes (GPs) whose mean functions are parameterized via deep neural networks.
To test our method against conventional TO approaches implemented in commercial software, we evaluate it on four problems involving the minimization of dissipated power in Stokes flow.
arXiv Detail & Related papers (2024-08-07T01:01:35Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
We develop an algorithm to solve a class of non-gence minimax problems.
They can also work with both single or two mini-batch derivatives.
arXiv Detail & Related papers (2020-06-27T03:05:18Z) - Symbolic Regression using Mixed-Integer Nonlinear Optimization [9.638685454900047]
The Symbolic Regression (SR) problem is a hard problem in machine learning.
We propose a hybrid algorithm that combines mixed-integer nonlinear optimization with explicit enumeration.
We show that our algorithm is competitive, for some synthetic data sets, with a state-of-the-art SR software and a recent physics-inspired method called AI Feynman.
arXiv Detail & Related papers (2020-06-11T20:53:17Z) - Solution Path Algorithm for Twin Multi-class Support Vector Machine [6.97711662470035]
The paper is devoted to the fast regularization parameter tuning algorithm for the twin multi-class support vector machine.
A new sample dataset division method is adopted and the Lagrangian multipliers are proved to be piecewise linear.
The proposed method can achieve good classification performance with reducing the computational cost of grid search method from exponential level to the constant level.
arXiv Detail & Related papers (2020-05-30T14:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.