ProcData: An R Package for Process Data Analysis
- URL: http://arxiv.org/abs/2006.05061v1
- Date: Tue, 9 Jun 2020 05:44:57 GMT
- Title: ProcData: An R Package for Process Data Analysis
- Authors: Xueying Tang, Susu Zhang, Zhi Wang, Jingchen Liu, Zhiliang Ying
- Abstract summary: R package ProcData presented in this article is designed to provide tools for processing, describing, and analyzing process data.
Two feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors.
In addition, several response process generators and a real dataset of response processes of the climate control item in the 2012 Programme for International Student Assessment are included in the package.
- Score: 5.278929511653198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Process data refer to data recorded in the log files of computer-based items.
These data, represented as timestamped action sequences, keep track of
respondents' response processes of solving the items. Process data analysis
aims at enhancing educational assessment accuracy and serving other assessment
purposes by utilizing the rich information contained in response processes. The
R package ProcData presented in this article is designed to provide tools for
processing, describing, and analyzing process data. We define an S3 class
"proc" for organizing process data and extend generic methods summary and print
for class "proc". Two feature extraction methods for process data are
implemented in the package for compressing information in the irregular
response processes into regular numeric vectors. ProcData also provides
functions for fitting and making predictions from a neural-network-based
sequence model. These functions call relevant functions in package keras for
constructing and training neural networks. In addition, several response
process generators and a real dataset of response processes of the climate
control item in the 2012 Programme for International Student Assessment are
included in the package.
Related papers
- Navigating Process Mining: A Case study using pm4py [0.0]
We present a comprehensive analysis of road traffic fine management processes using the pm4py library in Python.
Through filtering and statistical analysis, we uncover key patterns and variations in the process executions.
We visualize the discovered models to understand the workflow structures and dependencies within the process.
arXiv Detail & Related papers (2024-09-17T15:48:46Z) - Conversational Process Modeling: Can Generative AI Empower Domain
Experts in Creating and Redesigning Process Models? [0.0]
This work provides a systematic analysis of existing chatbots for support of conversational process modeling.
A literature review on conversational process modeling is performed, resulting in a taxonomy of application scenarios for conversational process modeling.
An evaluation method is applied for the output of AI-driven chatbots with respect to completeness and correctness of the process models.
arXiv Detail & Related papers (2023-04-19T06:54:14Z) - Accessing and Interpreting OPC UA Event Traces based on Semantic Process
Descriptions [69.9674326582747]
This paper proposes an approach to access a production systems' event data based on the event data's context.
The approach extracts filtered event logs from a database system by combining: 1) a semantic model of a production system's hierarchical structure, 2) a formalized process description and 3) an OPC UA information model.
arXiv Detail & Related papers (2022-07-25T15:13:44Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
We propose a framework for learning representations of educational process data.
Our framework consists of a pre-training step that uses BERT-type objectives to learn representations from sequential process data.
We apply our framework to the 2019 nation's report card data mining competition dataset.
arXiv Detail & Related papers (2022-04-28T16:07:28Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
We consider human activity recognition (HAR) from wearable sensor data in manual-work processes.
We show how context information can be integrated systematically into a deep neural network-based HAR system.
We empirically show that our proposed architecture increases HAR performance, compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T06:08:25Z) - Procedures as Programs: Hierarchical Control of Situated Agents through
Natural Language [81.73820295186727]
We propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control.
We instantiate this framework on the IQA and ALFRED datasets for NL instruction following.
arXiv Detail & Related papers (2021-09-16T20:36:21Z) - Process Comparison Using Object-Centric Process Cubes [69.68068088508505]
In real-life business processes, different behaviors exist that make the overall process too complex to interpret.
Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes.
We propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs.
arXiv Detail & Related papers (2021-03-12T10:08:28Z) - PROVED: A Tool for Graph Representation and Analysis of Uncertain Event
Data [0.966840768820136]
The discipline of process mining aims to study processes in a data-driven manner by analyzing historical process executions.
Recent novel types of event data have gathered interest among the process mining community, including uncertain event data.
The PROVED tool helps to explore, navigate and analyze such uncertain event data.
arXiv Detail & Related papers (2021-03-09T17:11:54Z) - Subtask Analysis of Process Data Through a Predictive Model [5.7668512557707166]
This paper develops a computationally efficient method for exploratory analysis of such process data.
The new approach segments a lengthy individual process into a sequence of short subprocesses to achieve complexity reduction.
We use the process data from PIAAC 2012 to demonstrate how exploratory analysis of process data can be done with the new approach.
arXiv Detail & Related papers (2020-08-29T21:11:01Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.