3D Point Cloud Feature Explanations Using Gradient-Based Methods
- URL: http://arxiv.org/abs/2006.05548v1
- Date: Tue, 9 Jun 2020 23:17:24 GMT
- Title: 3D Point Cloud Feature Explanations Using Gradient-Based Methods
- Authors: Ananya Gupta, Simon Watson, Hujun Yin
- Abstract summary: We extend the saliency methods that have been shown to work on image data to deal with 3D data.
Driven by the insight that 3D data is inherently sparse, we visualise the features learnt by a voxel-based classification network.
Our results show that the Voxception-ResNet model can be pruned down to 5% of its parameters with negligible loss in accuracy.
- Score: 11.355723874379317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability is an important factor to drive user trust in the use of
neural networks for tasks with material impact. However, most of the work done
in this area focuses on image analysis and does not take into account 3D data.
We extend the saliency methods that have been shown to work on image data to
deal with 3D data. We analyse the features in point clouds and voxel spaces and
show that edges and corners in 3D data are deemed as important features while
planar surfaces are deemed less important. The approach is model-agnostic and
can provide useful information about learnt features. Driven by the insight
that 3D data is inherently sparse, we visualise the features learnt by a
voxel-based classification network and show that these features are also sparse
and can be pruned relatively easily, leading to more efficient neural networks.
Our results show that the Voxception-ResNet model can be pruned down to 5\% of
its parameters with negligible loss in accuracy.
Related papers
- Inverse Neural Rendering for Explainable Multi-Object Tracking [35.072142773300655]
We recast 3D multi-object tracking from RGB cameras as an emphInverse Rendering (IR) problem.
We optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties.
We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data.
arXiv Detail & Related papers (2024-04-18T17:37:53Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Self-Supervised Learning with Multi-View Rendering for 3D Point Cloud
Analysis [33.31864436614945]
We propose a novel pre-training method for 3D point cloud models.
Our pre-training is self-supervised by a local pixel/point level correspondence loss and a global image/point cloud level loss.
These improved models outperform existing state-of-the-art methods on various datasets and downstream tasks.
arXiv Detail & Related papers (2022-10-28T05:23:03Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Paint and Distill: Boosting 3D Object Detection with Semantic Passing
Network [70.53093934205057]
3D object detection task from lidar or camera sensors is essential for autonomous driving.
We propose a novel semantic passing framework, named SPNet, to boost the performance of existing lidar-based 3D detection models.
arXiv Detail & Related papers (2022-07-12T12:35:34Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - Graphite: GRAPH-Induced feaTure Extraction for Point Cloud Registration [80.69255347486693]
We introduce a GRAPH-Induced feaTure Extraction pipeline, a simple yet powerful feature and keypoint detector.
We construct a generic graph-based learning scheme to describe point cloud regions and extract salient points.
We Reformulate the 3D keypoint pipeline with graph neural networks which allow efficient processing of the point set.
arXiv Detail & Related papers (2020-10-18T19:41:09Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.