Telling Left from Right: Learning Spatial Correspondence of Sight and
Sound
- URL: http://arxiv.org/abs/2006.06175v2
- Date: Fri, 12 Jun 2020 03:12:16 GMT
- Title: Telling Left from Right: Learning Spatial Correspondence of Sight and
Sound
- Authors: Karren Yang, Bryan Russell, Justin Salamon
- Abstract summary: We propose a novel self-supervised task to leverage a principle: matching spatial information in the audio stream to the positions of sound sources in the visual stream.
We train a model to determine whether the left and right audio channels have been flipped, forcing it to reason about spatial localization across the visual and audio streams.
We demonstrate that understanding spatial correspondence enables models to perform better on three audio-visual tasks, achieving quantitative gains over supervised and self-supervised baselines.
- Score: 16.99266133458188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised audio-visual learning aims to capture useful representations
of video by leveraging correspondences between visual and audio inputs.
Existing approaches have focused primarily on matching semantic information
between the sensory streams. We propose a novel self-supervised task to
leverage an orthogonal principle: matching spatial information in the audio
stream to the positions of sound sources in the visual stream. Our approach is
simple yet effective. We train a model to determine whether the left and right
audio channels have been flipped, forcing it to reason about spatial
localization across the visual and audio streams. To train and evaluate our
method, we introduce a large-scale video dataset, YouTube-ASMR-300K, with
spatial audio comprising over 900 hours of footage. We demonstrate that
understanding spatial correspondence enables models to perform better on three
audio-visual tasks, achieving quantitative gains over supervised and
self-supervised baselines that do not leverage spatial audio cues. We also show
how to extend our self-supervised approach to 360 degree videos with ambisonic
audio.
Related papers
- Learning Spatial Features from Audio-Visual Correspondence in Egocentric Videos [69.79632907349489]
We propose a self-supervised method for learning representations based on spatial audio-visual correspondences in egocentric videos.
Our method uses a masked auto-encoding framework to synthesize masked (multi-channel) audio through the synergy of audio and vision.
arXiv Detail & Related papers (2023-07-10T17:58:17Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities.
We translate the input audio to visual features, then use a pre-trained generator to produce an image.
We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches.
arXiv Detail & Related papers (2023-03-30T16:01:50Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - Geometry-Aware Multi-Task Learning for Binaural Audio Generation from
Video [94.42811508809994]
We propose an audio spatialization method that draws on visual information in videos to convert their monaural (single-channel) audio to audio.
Whereas existing approaches leverage visual features extracted directly from video frames, our approach explicitly disentangles the geometric cues present in the visual stream to guide the learning process.
arXiv Detail & Related papers (2021-11-21T19:26:45Z) - Exploiting Audio-Visual Consistency with Partial Supervision for Spatial
Audio Generation [45.526051369551915]
We propose an audio spatialization framework to convert a monaural video into a one exploiting the relationship across audio and visual components.
Experiments on benchmark datasets confirm the effectiveness of our proposed framework in both semi-supervised and fully supervised scenarios.
arXiv Detail & Related papers (2021-05-03T09:34:11Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
We introduce a novel self-supervised pretext task for learning representations from audio-visual content.
The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks.
arXiv Detail & Related papers (2020-11-03T16:20:04Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
We present an unsupervised approach that converts the input speech of any individual into audiovisual streams of potentially-infinitely many output speakers.
We use Exemplar Autoencoders to learn the voice, stylistic prosody, and visual appearance of a specific target speech exemplar.
arXiv Detail & Related papers (2020-01-13T18:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.