Hypernetwork-Based Augmentation
- URL: http://arxiv.org/abs/2006.06320v2
- Date: Thu, 7 Oct 2021 02:56:46 GMT
- Title: Hypernetwork-Based Augmentation
- Authors: Chih-Yang Chen and Che-Han Chang
- Abstract summary: We propose an efficient gradient-based search algorithm, called Hypernetwork-Based Augmentation (HBA)
Our HBA uses a hypernetwork to approximate a population-based training algorithm.
Our results show that HBA is competitive to the state-of-the-art methods in terms of both search speed and accuracy.
- Score: 1.6752182911522517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is an effective technique to improve the generalization of
deep neural networks. Recently, AutoAugment proposed a well-designed search
space and a search algorithm that automatically finds augmentation policies in
a data-driven manner. However, AutoAugment is computationally intensive. In
this paper, we propose an efficient gradient-based search algorithm, called
Hypernetwork-Based Augmentation (HBA), which simultaneously learns model
parameters and augmentation hyperparameters in a single training. Our HBA uses
a hypernetwork to approximate a population-based training algorithm, which
enables us to tune augmentation hyperparameters by gradient descent. Besides,
we introduce a weight sharing strategy that simplifies our hypernetwork
architecture and speeds up our search algorithm. We conduct experiments on
CIFAR-10, CIFAR-100, SVHN, and ImageNet. Our results show that HBA is
competitive to the state-of-the-art methods in terms of both search speed and
accuracy.
Related papers
- Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
In reinforcement learning (RL), the information content of data gathered by the learning agent is dependent on the setting of many hyper- parameters.
In this work, a novel approach for autonomous hyper- parameter setting using Bayesian optimization is proposed.
Experiments reveal promising results compared to other manual tweaking and optimization-based approaches.
arXiv Detail & Related papers (2021-12-15T13:10:44Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - Genealogical Population-Based Training for Hyperparameter Optimization [1.0514231683620516]
We experimentally demonstrate that our method cuts down by 2 to 3 times the computational cost required.
Our method is search-algorithm so that the inner search routine can be any search algorithm like TPE, GP, CMA or random search.
arXiv Detail & Related papers (2021-09-30T08:49:41Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTAR is a task-aware method to warm-start HPO for deep neural networks.
It learns a dataset (task) representation along with the performance predictor directly from raw images.
It evaluates 50% less configurations to achieve the best performance compared to existing methods.
arXiv Detail & Related papers (2020-05-21T08:56:50Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
We propose Differentiable Automatic Data Augmentation (DADA) which dramatically reduces the cost.
We conduct extensive experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.
Results show our DADA is at least one order of magnitude faster than the state-of-the-art while achieving very comparable accuracy.
arXiv Detail & Related papers (2020-03-08T13:23:14Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
We propose an efficient automatic parameter optimization approach, which is based on the mapping from data to the corresponding hyper- parameters.
We show that the proposed approaches outperform the state-of-the-art apporaches significantly.
arXiv Detail & Related papers (2020-03-03T19:26:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.