Quantum Algorithm for Smoothed Particle Hydrodynamics
- URL: http://arxiv.org/abs/2006.06719v4
- Date: Fri, 21 Jul 2023 11:14:38 GMT
- Title: Quantum Algorithm for Smoothed Particle Hydrodynamics
- Authors: Rhonda Au-Yeung and Anthony J. Williams and Viv M. Kendon and Steven
J. Lind
- Abstract summary: We present a quantum computing algorithm for the smoothed particle hydrodynamics (SPH) method.
Error convergence is exponentially fast in the number of qubits.
We extend the method to solve the one-dimensional advection and partial diffusion differential equations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a quantum computing algorithm for the smoothed particle
hydrodynamics (SPH) method. We use a normalization procedure to encode the SPH
operators and domain discretization in a quantum register. We then perform the
SPH summation via an inner product of quantum registers. Using a
one-dimensional function, we test the approach in a classical sense for the
kernel sum and first and second derivatives of a one-dimensional function,
using both the Gaussian and Wendland kernel functions, and compare various
register sizes against analytical results. Error convergence is exponentially
fast in the number of qubits. We extend the method to solve the one-dimensional
advection and diffusion partial differential equations, which are commonly
encountered in fluids simulations. This work provides a foundation for a more
general SPH algorithm, eventually leading to highly efficient simulations of
complex engineering problems on gate-based quantum computers.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Quantum Iterative Methods for Solving Differential Equations with Application to Computational Fluid Dynamics [14.379311972506791]
We propose quantum methods for solving differential equations based on a gradual improvement of the solution via an iterative process.
We benchmark the approach on paradigmatic fluid dynamics problems.
arXiv Detail & Related papers (2024-04-12T17:08:27Z) - Quantum Circuits for partial differential equations via Schrödingerisation [26.7034263292622]
We present implementation of a quantum algorithm for general PDEs using Schr"odingerisation techniques.
We provide examples of the heat equation, and the advection equation approximated by the upwind scheme.
arXiv Detail & Related papers (2024-03-15T05:42:03Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Quantum simulation of Maxwell's equations via Schr\"odingersation [27.193565893837356]
We present quantum algorithms for electromagnetic fields governed by Maxwell's equations.
The algorithms are based on the Schr"odingersation approach.
Instead of qubits, the quantum algorithms can also be formulated in the continuous variable quantum framework.
arXiv Detail & Related papers (2023-08-16T14:52:35Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum algorithm for collisionless Boltzmann simulation of self-gravitating systems [0.0]
We propose an efficient quantum algorithm to solve the collisionless Boltzmann equation (CBE)
We extend the algorithm to perform quantum simulations of self-gravitating systems, incorporating the method to calculate gravity.
It will allow us to perform large-scale CBE simulations on future quantum computers.
arXiv Detail & Related papers (2023-03-29T06:59:00Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Simulating Markovian open quantum systems using higher-order series
expansion [1.713291434132985]
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems.
Our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding.
arXiv Detail & Related papers (2022-12-05T06:02:50Z) - Algorithm for initializing a generalized fermionic Gaussian state on a
quantum computer [0.0]
We present explicit expressions for the central piece of a variational method developed by Shi et al.
We derive iterative analytical expressions for the evaluation of expectation values of products of fermionic creation and subroutine operators.
We present a simple gradient-descent-based algorithm that can be used as an optimization in combination with imaginary time evolution.
arXiv Detail & Related papers (2021-05-27T10:31:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.