Learning Graph Models for Retrosynthesis Prediction
- URL: http://arxiv.org/abs/2006.07038v2
- Date: Fri, 4 Jun 2021 14:33:41 GMT
- Title: Learning Graph Models for Retrosynthesis Prediction
- Authors: Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause,
Regina Barzilay
- Abstract summary: Retrosynthesis prediction is a fundamental problem in organic synthesis.
This paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction.
Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
- Score: 90.15523831087269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrosynthesis prediction is a fundamental problem in organic synthesis,
where the task is to identify precursor molecules that can be used to
synthesize a target molecule. A key consideration in building neural models for
this task is aligning model design with strategies adopted by chemists.
Building on this viewpoint, this paper introduces a graph-based approach that
capitalizes on the idea that the graph topology of precursor molecules is
largely unaltered during a chemical reaction. The model first predicts the set
of graph edits transforming the target into incomplete molecules called
synthons. Next, the model learns to expand synthons into complete molecules by
attaching relevant leaving groups. This decomposition simplifies the
architecture, making its predictions more interpretable, and also amenable to
manual correction. Our model achieves a top-1 accuracy of $53.7\%$,
outperforming previous template-free and semi-template-based methods.
Related papers
- UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
We propose a novel end-to-end graph generation model for retrosynthesis prediction.
It sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants.
Experiments on a benchmark dataset show that the proposed model significantly outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2022-09-27T06:29:35Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model.
We show improved results on several evaluation metrics on two commonly adopted datasets for molecule generation.
arXiv Detail & Related papers (2020-09-01T21:58:07Z) - Molecule Edit Graph Attention Network: Modeling Chemical Reactions as
Sequences of Graph Edits [0.0]
We present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder-decoder neural model.
MEGAN is inspired by models that express a chemical reaction as a sequence of graph edits, akin to the arrow pushing formalism.
We extend this model to retrosynthesis prediction (predicting substrates given the product of a chemical reaction) and scale it up to large datasets.
arXiv Detail & Related papers (2020-06-27T18:50:24Z) - A Graph to Graphs Framework for Retrosynthesis Prediction [42.99048270311063]
A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule.
We propose a novel template-free approach called G2Gs by transforming a target molecular graph into a set of reactant molecular graphs.
G2Gs significantly outperforms existing template-free approaches by up to 63% in terms of the top-1 accuracy.
arXiv Detail & Related papers (2020-03-28T06:16:56Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.