PAC-Bayes unleashed: generalisation bounds with unbounded losses
- URL: http://arxiv.org/abs/2006.07279v2
- Date: Wed, 30 Sep 2020 16:02:45 GMT
- Title: PAC-Bayes unleashed: generalisation bounds with unbounded losses
- Authors: Maxime Haddouche and Benjamin Guedj and Omar Rivasplata and John
Shawe-Taylor
- Abstract summary: We present new PAC-Bayesian generalisation bounds for learning problems with unbounded loss functions.
This extends the relevance and applicability of the PAC-Bayes learning framework.
- Score: 12.078257783674923
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present new PAC-Bayesian generalisation bounds for learning problems with
unbounded loss functions. This extends the relevance and applicability of the
PAC-Bayes learning framework, where most of the existing literature focuses on
supervised learning problems with a bounded loss function (typically assumed to
take values in the interval [0;1]). In order to relax this assumption, we
propose a new notion called HYPE (standing for \emph{HYPothesis-dependent
rangE}), which effectively allows the range of the loss to depend on each
predictor. Based on this new notion we derive a novel PAC-Bayesian
generalisation bound for unbounded loss functions, and we instantiate it on a
linear regression problem. To make our theory usable by the largest audience
possible, we include discussions on actual computation, practicality and
limitations of our assumptions.
Related papers
- Misclassification excess risk bounds for PAC-Bayesian classification via convexified loss [0.0]
PAC-Bayesian bounds are a valuable tool for designing new learning algorithms in machine learning.
In this paper we show how to leverage relative bounds in expectation rather than relying on PAC-Bayesian bounds in terms of generalization.
arXiv Detail & Related papers (2024-08-16T11:41:06Z) - A PAC-Bayesian Link Between Generalisation and Flat Minima [36.00919528944891]
Modern machine learning usually involves predictors in the overparametrised setting.
This phenomenon challenges many theoretical results, and remains an open problem.
We provide novel generalisation bounds involving gradient terms.
arXiv Detail & Related papers (2024-02-13T15:03:02Z) - PAC-Bayes-Chernoff bounds for unbounded losses [9.987130158432755]
We introduce a new PAC-Bayes oracle bound for unbounded losses that extends Cram'er-Chernoff bounds to the PAC-Bayesian setting.
Our approach naturally leverages properties of Cram'er-Chernoff bounds, such as exact optimization of the free parameter in many PAC-Bayes bounds.
arXiv Detail & Related papers (2024-01-02T10:58:54Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
We propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities.
We empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
arXiv Detail & Related papers (2022-10-12T12:49:20Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI)
Contrary to other CMI bounds, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation.
We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning.
arXiv Detail & Related papers (2022-07-01T17:58:29Z) - Information Complexity and Generalization Bounds [0.0]
We show a unifying picture of PAC-Bayesian and mutual information-based upper bounds on randomized learning algorithms.
We discuss two practical examples for learning with neural networks, namely, Entropy- and PAC-Bayes- SGD.
arXiv Detail & Related papers (2021-05-04T20:37:57Z) - A General Framework for the Practical Disintegration of PAC-Bayesian
Bounds [2.516393111664279]
We introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds.
Our bounds are easily optimizable and can be used to design learning algorithms.
arXiv Detail & Related papers (2021-02-17T09:36:46Z) - Relative Deviation Margin Bounds [55.22251993239944]
We give two types of learning bounds, both distribution-dependent and valid for general families, in terms of the Rademacher complexity.
We derive distribution-dependent generalization bounds for unbounded loss functions under the assumption of a finite moment.
arXiv Detail & Related papers (2020-06-26T12:37:17Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
We develop a generalization theory based on the probably approximately correct (PAC) learning framework.
We show that imposing a learner does not make a learning problem harder in the sense that any PAC learnable class is also a constrained learner.
We analyze the properties of this solution and use it to illustrate how constrained learning can address problems in fair and robust classification.
arXiv Detail & Related papers (2020-06-09T19:59:29Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
We introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss functions.
We derive novel generalization bounds for domain adaptation for a wide family of loss functions.
We also present a series of novel adaptation bounds for large classes of regularization-based algorithms.
arXiv Detail & Related papers (2009-02-19T18:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.