Algorithm for Computing Approximate Nash Equilibrium in Continuous Games
with Application to Continuous Blotto
- URL: http://arxiv.org/abs/2006.07443v5
- Date: Tue, 1 Jun 2021 06:46:50 GMT
- Title: Algorithm for Computing Approximate Nash Equilibrium in Continuous Games
with Application to Continuous Blotto
- Authors: Sam Ganzfried
- Abstract summary: We present a new algorithm for approximating Nash equilibrium strategies in continuous games.
In addition to two-player zero-sum games, our algorithm also applies to multiplayer games and games with imperfect information.
- Score: 1.7132914341329848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successful algorithms have been developed for computing Nash equilibrium in a
variety of finite game classes. However, solving continuous games -- in which
the pure strategy space is (potentially uncountably) infinite -- is far more
challenging. Nonetheless, many real-world domains have continuous action
spaces, e.g., where actions refer to an amount of time, money, or other
resource that is naturally modeled as being real-valued as opposed to integral.
We present a new algorithm for {approximating} Nash equilibrium strategies in
continuous games. In addition to two-player zero-sum games, our algorithm also
applies to multiplayer games and games with imperfect information. We
experiment with our algorithm on a continuous imperfect-information Blotto
game, in which two players distribute resources over multiple battlefields.
Blotto games have frequently been used to model national security scenarios and
have also been applied to electoral competition and auction theory. Experiments
show that our algorithm is able to quickly compute close approximations of Nash
equilibrium strategies for this game.
Related papers
- Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms [71.73971094342349]
Self-play via online learning is one of the premier ways to solve large-scale two-player zero-sum games.
We show that OMWU offers several advantages including logarithmic dependence on the size of the payoff matrix.
We prove that a broad class of algorithms that do not forget the past quickly all suffer the same issue.
arXiv Detail & Related papers (2024-06-15T13:26:17Z) - Neural Population Learning beyond Symmetric Zero-sum Games [52.20454809055356]
We introduce NeuPL-JPSRO, a neural population learning algorithm that benefits from transfer learning of skills and converges to a Coarse Correlated (CCE) of the game.
Our work shows that equilibrium convergent population learning can be implemented at scale and in generality.
arXiv Detail & Related papers (2024-01-10T12:56:24Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - ApproxED: Approximate exploitability descent via learned best responses [61.17702187957206]
We study the problem of finding an approximate Nash equilibrium of games with continuous action sets.
We propose two new methods that minimize an approximation of exploitability with respect to the strategy profile.
arXiv Detail & Related papers (2023-01-20T23:55:30Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Learning in Multi-Player Stochastic Games [1.0878040851638]
We consider the problem of simultaneous learning in games with many players in the finite-horizon setting.
While the typical target solution for a game is a Nash equilibrium, this is intractable with many players.
We turn to a different target: algorithms which generate an equilibrium when they are used by all players.
arXiv Detail & Related papers (2022-10-25T19:02:03Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Computing Nash Equilibria in Multiplayer DAG-Structured Stochastic Games
with Persistent Imperfect Information [1.7132914341329848]
We present an algorithm for approximating Nash equilibrium in multiplayer general-suming games with persistent imperfect information.
Using a new procedure, we are able to demonstrate that our algorithm computes a strategy that closely approximates Nash equilibrium in this game.
arXiv Detail & Related papers (2020-10-26T19:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.