Analyzing the Impact of Foursquare and Streetlight Data with Human
Demographics on Future Crime Prediction
- URL: http://arxiv.org/abs/2006.07516v1
- Date: Sat, 13 Jun 2020 00:11:20 GMT
- Title: Analyzing the Impact of Foursquare and Streetlight Data with Human
Demographics on Future Crime Prediction
- Authors: Fateha Khanam Bappee, Lucas May Petry, Amilcar Soares, Stan Matwin
- Abstract summary: We propose the use of streetlight infrastructure and Foursquare data along with demographic characteristics for improving future crime incident prediction.
Our proposed model was tested on each smallest geographic region in Halifax, Canada.
- Score: 11.55636955646976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding the factors contributing to criminal activities and their
consequences is essential to improve quantitative crime research. To respond to
this concern, we examine an extensive set of features from different
perspectives and explanations. Our study aims to build data-driven models for
predicting future crime occurrences. In this paper, we propose the use of
streetlight infrastructure and Foursquare data along with demographic
characteristics for improving future crime incident prediction. We evaluate the
classification performance based on various feature combinations as well as
with the baseline model. Our proposed model was tested on each smallest
geographic region in Halifax, Canada. Our findings demonstrate the
effectiveness of integrating diverse sources of data to gain satisfactory
classification performance.
Related papers
- Deep Learning Based Crime Prediction Models: Experiments and Analysis [1.4214002697449326]
Crime prediction is a widely studied research problem due to its importance in ensuring safety of city dwellers.
Deep learning based crime prediction models use complex architectures to capture the latent features in the crime data.
We conduct a comprehensive experimental evaluation of all major state-of-the-art deep learning based crime prediction models.
arXiv Detail & Related papers (2024-07-27T19:11:16Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - Spatial-Temporal Meta-path Guided Explainable Crime Prediction [40.03641583647572]
We present a Spatial-Temporal Metapath guided Explainable Crime prediction (STMEC) framework to capture dynamic patterns of crime behaviours.
We show the superiority of STMEC compared with other advancedtemporal models, especially in predicting felonies.
arXiv Detail & Related papers (2022-05-04T05:42:23Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
We show how differential victim crime reporting rates can lead to outcome disparities in common crime hot spot prediction models.
Our results suggest that differential crime reporting rates can lead to a displacement of predicted hotspots from high crime but low reporting areas to high or medium crime and high reporting areas.
arXiv Detail & Related papers (2021-01-30T01:57:22Z) - AIST: An Interpretable Attention-based Deep Learning Model for Crime
Prediction [0.30458514384586394]
We develop AIST, an Attention-based Interpretable S Temporal Network for crime prediction.
AIST models the dynamic spatial dependency and temporal patterns of a specific crime category.
Experiments show the superiority of our model in terms of both accuracy and interpretability using real datasets.
arXiv Detail & Related papers (2020-12-16T03:01:15Z) - Prediction of Homicides in Urban Centers: A Machine Learning Approach [0.8312466807725921]
This research presents a machine learning model to predict homicide crimes, using a dataset that uses generic data.
Analyses were performed with simple and robust algorithms on the created dataset.
Results are considered as a baseline for the proposed problem.
arXiv Detail & Related papers (2020-08-16T19:13:53Z) - Exploring Spatio-Temporal and Cross-Type Correlations for Crime
Prediction [48.1813701535167]
We perform crime prediction exploiting the cross-type and-temporal correlations of urban crimes.
We propose a coherent framework to mathematically model these correlations for crime prediction.
Further experiments have been conducted to understand the importance of different correlations in crime prediction.
arXiv Detail & Related papers (2020-01-20T00:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.