Interpretable Neural Architecture Search via Bayesian Optimisation with
Weisfeiler-Lehman Kernels
- URL: http://arxiv.org/abs/2006.07556v2
- Date: Fri, 19 Feb 2021 05:36:54 GMT
- Title: Interpretable Neural Architecture Search via Bayesian Optimisation with
Weisfeiler-Lehman Kernels
- Authors: Binxin Ru, Xingchen Wan, Xiaowen Dong, Michael Osborne
- Abstract summary: Current neural architecture search (NAS) strategies focus on finding a single, good, architecture.
We propose a Bayesian optimisation approach for NAS that combines the Weisfeiler-Lehman graph kernel with a Gaussian process surrogate.
Our method affords interpretability by discovering useful network features and their corresponding impact on the network performance.
- Score: 17.945881805452288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current neural architecture search (NAS) strategies focus only on finding a
single, good, architecture. They offer little insight into why a specific
network is performing well, or how we should modify the architecture if we want
further improvements. We propose a Bayesian optimisation (BO) approach for NAS
that combines the Weisfeiler-Lehman graph kernel with a Gaussian process
surrogate. Our method optimises the architecture in a highly data-efficient
manner: it is capable of capturing the topological structures of the
architectures and is scalable to large graphs, thus making the high-dimensional
and graph-like search spaces amenable to BO. More importantly, our method
affords interpretability by discovering useful network features and their
corresponding impact on the network performance. Indeed, we demonstrate
empirically that our surrogate model is capable of identifying useful motifs
which can guide the generation of new architectures. We finally show that our
method outperforms existing NAS approaches to achieve the state of the art on
both closed- and open-domain search spaces.
Related papers
- Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
We present a graph diffusion-based NAS approach that uses discrete conditional graph diffusion processes to generate high-performing neural network architectures.
We show promising results on six standard benchmarks, yielding novel and unique architectures at a fast speed.
arXiv Detail & Related papers (2024-03-09T21:45:31Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
We propose a framework to optimize for both task performance and "introspectability," a surrogate metric for aspects of interpretability.
We demonstrate that jointly optimizing for task error and introspectability leads to more disentangled and debuggable architectures that perform within error.
arXiv Detail & Related papers (2021-12-16T05:50:55Z) - Network Graph Based Neural Architecture Search [57.78724765340237]
We search neural network by rewiring the corresponding graph and predict the architecture performance by graph properties.
Because we do not perform machine learning over the entire graph space, the searching process is remarkably efficient.
arXiv Detail & Related papers (2021-12-15T00:12:03Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - Operation Embeddings for Neural Architecture Search [15.033712726016255]
We propose the replacement of fixed operator encoding with learnable representations in the optimization process.
Our method produces top-performing architectures that share similar operation and graph patterns.
arXiv Detail & Related papers (2021-05-11T09:17:10Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - Neural Architecture Optimization with Graph VAE [21.126140965779534]
We propose an efficient NAS approach to optimize network architectures in a continuous space.
The framework jointly learns four components: the encoder, the performance predictor, the complexity predictor and the decoder.
arXiv Detail & Related papers (2020-06-18T07:05:48Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.